

Lecture Notes in Artificial Intelligence 5357
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

The Duy Bui Tuong Vinh Ho
Quang Thuy Ha (Eds.)

Intelligent Agents
and Multi-Agent Systems

11th Pacific Rim International Conference
on Multi-Agents, PRIMA 2008
Hanoi, Vietnam, December 15-16, 2008
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

The Duy Bui
Quang Thuy Ha
Vietnam National University, Hanoi
College of Technology
144 Xuan Thuy, Cau Giay, Hanoi, Vietnam
E-mail: {duybt,thuyhq}@vnu.edu.vn

Tuong Vinh Ho
The Francophone Institute for Computer Science
42 Ta Quang Buu, Hai Ba Trung, Hanoi, Vietnam
E-mail: ho.tuong.vinh@auf.org

Library of Congress Control Number: 2008939922

CR Subject Classification (1998): I.2.11, I.2, C.2.4, D.2, F.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-89673-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89673-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12573233 06/3180 5 4 3 2 1 0

Preface

PRIMA 2008 was the 11th in a series of conferences gathering researchers de-
voted to developing intelligent agents and multi-agent technologies from Asia
and the Pacific regions. From its first incarnation over a decade ago, PRIMA
has emerged as a significant international forum, facilitating the exchange and
dissemination of innovative research from around the globe.

PRIMA 2008 was held in Vietnam, a tribute to this country’s emerging sci-
entific vitality and importance as a developing innovation center. The Program
Committee received 56 submissions from 20 countries. Many of these papers
are the work of PhD or Masters students from Asian countries including Ko-
rea, Japan, Indonesia, Malaysia, Iran, India, and Vietnam. In accordance with
the rules, each submission was carefully peer-reviewed by three Program Com-
mittee referees. Only 19 submissions were accepted as regular papers, with a
competitive rate of 33%.

Additionally, the Program Committee decided to accept 22 short papers
mainly written by graduate students, allowing our young colleagues an oppor-
tunity to present their work and new perspectives. These fresh perspectives
enhanced our experienced of the conference and complemented the high quality
of the professional papers submitted.

The array of subjects and applications explored in this year’s submissions
clearly demonstrate that agent technologies are now mature enough to cope
with hardcore, real-world problems in a variety of domains: from pure research
to applied industrial processes. As this technology matures, the potential number
of real-world applications for intelligent agents and multi-agent technologies is
rising dramatically. Accordingly, the number of theoretical references is also
widening: foundations of multi-agent systems are now being built using game
theory, mathematics, logic, software engineering, distributed systems, planning,
etc. The diversity and candor of the papers selected for this edition of PRIMA
are a direct reflection of the dynamic vigor of current research activity in Asia
and the Pacific regions.

Special thanks are due to the Program Committee members and all the exter-
nal reviewers, whose name are listed on the following pages, for their assistance
in reviewing and selecting papers. We are grateful for invaluable advice from
Ramakoti Sadananda, Aditya Ghose, Guido Governatori, Toru Ishida, Hiromitsu
Hattori and Alexis Drogoul during the preparation of the conference. We express
our appreciation to all staff of Coltech-VNUH and IFI for their active support
of PRIMA 2008. Last but not least, we are grateful to Springer for its helpful
collaboration and quick publication of the proceedings.

December 2008 The Duy Bui
Tuong Vinh Ho

Quang Thuy Ha

Organization

PRIMA 2008 was organized by the College of Technology, Vietnam National
University, Hanoi (Coltech-VNUH) and the Francophone Institute for Computer
Science (IFI).

Honorary Chairs

Huu Duc Nguyen, Vietnam
Richard Canal, Vietnam

Advisory Board

R. Sadananda, Thailand
Aditya Ghose, Australia
Guido Governatori, Australia

General Chair

Quang Thuy Ha, Vietnam

Program Co-chairs

The Duy Bui, Vietnam
Tuong Vinh Ho, Vietnam

Doctoral Mentoring Chair

Dinh Que Tran, Vietnam

Organizing Committee

The Hien Nguyen, Vietnam (Chair)
Thu Hien Tran, Vietnam
Chau Mai, Vietnam
Oanh Tran, Vietnam
Huong Thao Nguyen, Vietnam

Publicity Chair
Son Bao Pham, Vietnam

VIII Organization

Program Committee

Abdul Sattar, Australia
Aditya Ghose, Australia
Alan Liu, Taiwan
Alberto Fernandez, Spain
Alexis Drogoul, Vietnam
Antonino Rotolo, Italy
Chao-Lin Liu, Taiwan
Dencho Batanov, Cyprus
Dinh Que Tran, Vietnam
Dirk Heylen, The Netherlands
Dongmo Zhang, Australia
Frank Dignum, The Netherlands
Graham Low, Australia
Guido Governatori, Australia
Hans van Ditmarsch, New Zealand
Ho-fung Leung, China
Jaeho Lee, Korea
Jean-Luc Koning, France
Jane Hsu, Taiwan
Joerg Denzinger, Canada
Joongmin Choi, Korea
Jyi-Shane Liu, Taiwan
Jung-Jin Yang, Korea
Kamal Karlapalem, India
Leendert van der Torre, Luxembourg
Lin Liu, China
Mehmet Orgun, Australia
Michael Winikoff, Australia
Mike Barley, New Zealand
Minkoo Kim, Korea
Naoki Fukuta, Japan
Ngoc Thanh Nguyen, Poland
Nicolas Marilleau, Vietnam
Paolo Giorgini, Italy
Rafael H. Bordini, UK
Ryszard Kowalczyk, Australia
Shaheen Fatima, UK
Shivashankar B. Nair, India
Son Bao Pham, Vietnam
Stephane Bressan, Singapore
Suresh Chande, Finland
Takayuki Ito, Japan
Tokuro Matsuo, Japan
Tommie Meyer, South Africa

Organization IX

Toru Ishida, Japan
Toshiharu Sugawara, Japan
Valentin Robu, The Netherlands
Vineet Padmanabhan, India
Virginia Dignum, The Netherlands
Von-Wun Soo, Taiwan
Wayne Wobcke, Australia
Wojtek Jamroga, Germany
Yasuhiko Kitamura, Japan
Zili Zhang, Australia

External Reviewers

Huiye Ma
Ji Ma

Jie Tang
Motohiro Mase

Table of Contents

Keynote Speech: A Review of the Ontological Status, Computational
Foundations and Methodological Processes of Agent-Based Modeling
and Simulation Approaches: Open Challenges and Research
Perspectives . 1

Alexis Drogoul

Keynote Speech: Computational Collective Intelligence and Knowledge
Inconsistency in Multi-Agent Environments . 2

Ngoc Thanh Nguyen

Keynote Speech: Agent Oriented Software Engineering: Why and
How . 4

Lin Padgham

Coordinating Agents Plans in Multi-Agent Systems Using Colored
Petri Nets . 6

Maryam Nooraee Abadeh, Kamran Zaminifar, and
Mohammad-Reza Khayyambashi

Design of an Internet-Based Advisory System: A Multi-Agent
Approach . 14

Saadat M. Alhashmi

Towards Virtual Epidemiology: An Agent-Based Approach to the
Modeling of H5N1 Propagation and Persistence in North-Vietnam 26

Edouard Amouroux, Stéphanie Desvaux, and Alexis Drogoul

Measurement of Underlying Cooperation in Multiagent Reinforcement
Learning . 34

Sachiyo Arai, Yoshihisa Ishigaki, and Hironori Hirata

Reo Connectors as Coordination Artifacts in 2APL Systems 42
Farhad Arbab, Lăcrămioara Aştefănoaei, Frank S. de Boer,
Mehdi Dastani, John-Jules Meyer, and Nick Tinnermeier

A Verification Framework for Normative Multi-Agent Systems 54
Lăcrămioara Aştefănoaei, Mehdi Dastani, John-Jules Meyer, and
Frank S. de Boer

Social Viewpoints for Arguing about Coalitions . 66
Guido Boella, Leendert van der Torre, and Serena Villata

Changing Institutional Goals and Beliefs of Autonomous Agents 78
Guido Boella, Leendert van der Torre, and Serena Villata

XII Table of Contents

Reasoning about Constitutive Norms, Counts-As Conditionals,
Institutions, Deadlines and Violations . 86

Guido Boella, Jan Broersen, and Leendert van der Torre

When to Use a Multi-Agent System? . 98
Paul Bogg, Ghassan Beydoun, and Graham Low

Multiagent Incremental Learning in Networks . 109
Gauvain Bourgne, Amal El Fallah Seghrouchni,
Nicolas Maudet, and Henry Soldano

UML-F in the Design of an Agent-Oriented Software Framework 121
Daniel Cabrera-Paniagua and Claudio Cubillos

Interactive Learning of Expert Criteria for Rescue Simulations 127
Thanh-Quang Chu, Alain Boucher, Alexis Drogoul, Duc-An Vo,
Hong-Phuong Nguyen, and Jean-Daniel Zucker

Modularity in Agent Programming Languages: An Illustration in
Extended 2APL . 139

Mehdi Dastani, Christian P. Mol, and Bas R. Steunebrink

On the Pheromone Update Rules of Ant Colony Optimization
Approaches for the Job Shop Scheduling Problem . 153

Dong Do Duc, Huy Q. Dinh, and Huan Hoang Xuan

Preliminary Result on Secure Protocols for Multiple Issue Negotiation
Problems . 161

Katsuhide Fujita, Takayuki Ito, and Mark Klein

Performance Analysis about Parallel Greedy Approximation on
Combinatorial Auctions . 173

Naoki Fukuta and Takayuki Ito

Online Market Coordination . 185
Masabumi Furuhata, Dongmo Zhang, and Laurent Perrussel

Towards an Evaluation Framework for MAS Software Engineering 197
Emilia Garcia, Adriana Giret, and Vicente Botti

From Obligations to Organizational Structures in Multi-Agent
Systems . 206

J. Octavio Gutiérrez-Garćıa, Jean-Luc Koning, and
Félix F. Ramos-Corchado

Addressing the Brittleness of Agent Interaction . 214
Mohd Fadzil Hassan and Dave Robertson

Dividing Agents on the Grid for Large Scale Simulation 222
Dac Phuong Ho, The Duy Bui, and Nguyen Luong Do

Table of Contents XIII

An Interest Rate Adjusting Method with Bayesian Estimation in Social
Lending . 231

Masashi Iwakami and Takayuki Ito

A Temporal Logic for Stochastic Multi-Agent Systems 239
Wojciech Jamroga

Applying the Logic of Multiple-Valued Argumentation to Social Web:
SNS and Wikipedia . 251

Shusuke Kuribara, Safia Abbas, and Hajime Sawamura

Simulation of Halal Food Supply Chain with Certification System:
A Multi-Agent System Approach . 259

YiHua Lam and Saadat M. Alhashmi

A Novel Approach for Conflict Resolution in Context-Awareness Using
Semantic Unification of Multi-Cognition . 267

Keonsoo Lee and Minkoo Kim

Improving Trade-Offs in Bilateral Negotiations under Complete and
Incomplete Information Settings . 275

Ivan Marsa-Maestre, Miguel A. Lopez-Carmona, and
Juan R. Velasco

PAMS – A New Collaborative Framework for Agent-Based Simulation
of Complex Systems . 287

Trong Khanh Nguyen, Nicolas Marilleau, and Tuong Vinh Ho

Methodological Steps and Issues When Deriving Individual
Based-Models from Equation-Based Models: A Case Study in
Population Dynamics . 295

Ngoc Doanh Nguyen, Alexis Drogoul, and Pierre Auger

Abstraction of Agent Cooperation in Agent Oriented Programming
Language . 307

Nguyen Tuan Duc and Ikuo Takeuchi

Knowledge Assessment: A Modal Logic Approach . 315
Vineet Padmanabhan, Guido Governatori, and Subhasis Thakur

The Design of a Self-locating Automatic-Driving Robot 323
Gi-Duck Park, Robert McCartney, and Jung-Jin Yang

Settling on the Group’s Goals: An n-Person Argumentation Game
Approach . 328

Duy Hoang Pham, Subhasis Thakur, and Guido Governatori

Revenue Maximising Adaptive Auctioneer Agent . 340
Janine Claire Pike and Elizabeth Marie Ehlers

XIV Table of Contents

Managing Collaboration Using Agent Based Simulation 348
Utomo Sarjono Putro, Manahan Siallagan, Santi Novani, and
Dhanan Sarwo Utomo

Using Agent-Based Simulation of Human Behavior to Reduce
Evacuation Time . 357

Arief Rahman, Ahmad Kamil Mahmood, and Etienne Schneider

Participatory Simulation Platform Using Network Games 370
Shoichi Sawada, Hiromitsu Hattori, Marika Odagaki,
Kengo Nakajima, and Toru Ishida

A Multiagent-System Framework for Hierarchical Control and
Monitoring of Complex Process Control Systems . 381

Vu Van Tan, Dae-Seung Yoo, and Myeong-Jae Yi

Agent Reasoning with Semantic Web in Web Blogs 389
Dinh Que Tran and Tuan Nha Hoang

Design of a Multiagent System over Mobile Devices for the Planning of
Touristic Travels . 397

Miguel Valdés and Claudio Cubillos

Author Index . 405

Keynote Speech:
A Review of the Ontological Status,

Computational Foundations and Methodological
Processes of Agent-Based Modeling and

Simulation Approaches: Open Challenges and
Research Perspectives

Alexis Drogoul

IRD, UR079-GEODES, 32 av. Henri Varagnat, 93143 Bondy Cedex, France
alexis.drogoul@gmail.com

Agent based modeling (ABM) and simulation techniques are now used in a
number of domains, ranging from social sciences, ecology or biology to exact
sciences like physics. They provide modelers with the ability to understand and
reproduce, through virtual experiments, the emergence of nearly any kind of
macro-structure or macro-dynamics from the interactions of lower level com-
puter programs called agents. As these agents can be programmed with all the
details required and can arbitrarily cover any level of representation, ABM unde-
niably represents one of the most versatile approaches to understanding complex
systems through simulation.

However, a lot of criticisms have also been expressed against them, which
roughly fall into three categories:

– Criticisms regarding the ontological status of agent-based models in scientific
research and that of the results they provide.

– Criticisms (not unrelated to the previous ones) regarding the difficulty of
design, calibration, manipulation and validation of these models.

– Criticisms regarding their apparent inability to cope with multiple levels of
abstraction at once, in both modeling and simulation.

My talk will try to reply to these criticisms in the light of successful achieve-
ments of ABMs, but also show that most of them, although they can concern
other modeling and simulation approaches, are effectively sound. This will give
me the opportunity to underline which current and future directions of multi-
agent researches should be mobilized in order to provide innovative answers and
therefore contribute to the reinforcement and credibility of ABMs, especially
with respect to the last category of criticisms.

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 2–3, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Keynote Speech:
Computational Collective Intelligence and Knowledge

Inconsistency in Multi-agent Environments

Ngoc Thanh Nguyen

Institute of Computer Science, Wroclaw University of Technology
Str. Janiszewskiego 11/17, 50-370 Wroclaw, Poland

thanh@pwr.wroc.pl

It is well-known that the knowledge of a group is not the same as the union of
knowledge states of the group members. Let’s consider several two examples. If an
agent A knows that a > b and if an agent B knows that b > c for some real numbers
variables a, b and c, then together these agents know not only a > b and b > c, but also
a > c. If, in another case, A knows that a ≥ b and B knows that b ≥ a then together
they know also that a = b. One can then state that the power of the collective
knowledge exists owing to the inconsistency of knowledge of its members.

Computational Collective Intelligence (CCI) is understood as an AI sub-field
dealing with soft computing methods which enable making group decisions or
processing knowledge among autonomous units acting in distributed environments.
Web-based systems, social networks and multi-agent systems very often need these
tools for working out consistent knowledge states, resolving conflicts and making
decisions.

In this talk I present several aspects related to the answers of the following
questions:

1. How to determine the knowledge of a collective on the basis of the knowledge of
its members?

2. How to evaluate the quality of the collective knowledge?
3. Is the intelligence of a collective larger than the intelligence of its members?
4. How multi-agent systems can use these results?

Many examples show that the knowledge of a collective is not a usual “sum” of the
knowledge of its members. For multi-agent environments, in case of some conflict
between agents referring to the proper knowledge of a real world, CCI tools may be
very useful for reconciling the inconsistency and processing the knowledge of agents.

In the first part of this talk, the theoretical foundation for conflict analysis and
consensus choice is presented. The inconsistency of knowledge at syntactic and
semantic levels and the proposal of the structures for representing inconsistency
and algorithms for its solution are analyzed. The analysis of expert knowledge
inconsistency and conflict of ontologies is also included. It has been shown that that
inconsistency of experts is very useful. In work [1] the author defined and analyzed
classes of consensus functions. He also studied such conceptions as consensus
susceptibility, quality of consensus, or reduction of consensus numbers. Besides, he
introduced a model for knowledge integration and analyzed it to great theoretical

 Computational Collective Intelligence and Knowledge Inconsistency 3

details. In addition, he has worked out an algorithm for integration, which is quite useful
to put the theory in practice by implementing it as a working system. The author has
shown methods for knowledge inconsistency resolution and knowledge integration both
on the syntactic and semantic levels. Furthermore, he has investigated more practical
issues such as a method of inconsistency resolution for ontologies, a method for
reconciling inconsistency of knowledge of experts, a method for determining a learning
scenario in intelligent tutoring systems, and a method for reconciling inconsistent
knowledge and answers given by different agents in a meta-search engine.

In the second part, a formal model for calculating the knowledge of collectives
with using a quasi-Euclidean space is presented. The original features of this model
are based on the proofs of several results owing to which one can get to know about
the relationships between the collective knowledge state and the real knowledge state.
These results show that the knowledge of a collective is more proper than the
knowledge of its members. Thus in some restricted scope one can state that the
hypothesis “A collective is more intelligent than one its single member” is true. Some
relationships between the consistency degree of a collective and the distance between
the collective knowledge state and the real knowledge state are also presented. As it
has been proved, the assumption of identical distances between collective members
and the real knowledge state may improve the quality of the collective knowledge
state in the sense that it is more similar to the proper knowledge state than each of the
members’ states [2].

In the third part, several approaches of using collective knowledge determination
are proposed to be applied in multi-agent environments. Two applications based on
the theoretical work are presented. The first refers to recommendation in intelligent
tutoring system and the second is about creating a consensus-based multi-agent
system to aid users in information retrieval from the Internet [3].

References

1. Nguyen, N.T.: Advanced Methods for Inconsistent Knowledge Management. Springer,
London (2008)

2. Nguyen, N.T.: Inconsistency of Knowledge and Collective Intelligence. Cybernetics and
Systems 39(6), 542–562 (2008)

3. Sliwko, L., Nguyen, N.T.: Using Multi-agent Systems and Consensus Methods for
Information Retrieval in Internet. International Journal of Intelligent Information and
Database Systems 1(2), 181–198 (2007)

Keynote Speech:
Agent Oriented Software Engineering:

Why and How

Lin Padgham

RMIT
University Melbourne,

Australia

Intelligent agents are a new paradigm for developing a wide range of software
systems. Just as object oriented programming is at a higher level of abstraction
than procedural programming, so agent oriented is at a higher abstraction level
than object oriented. This facilitates faster and easier development of more com-
plex systems, than is possible with a less powerful paradigm. Some research has
shown that efficiency gains of more than 300 oriented approach to development.

One of the most popular agent approaches is what is known as the Belief Desire
Intention (BDI) agent paradigm. It is this approach which was the basis of the
efficiency gains mentioned above. This approach, at the practical, engineering
level, is based on the notion of goals, and abstract plans as ways to achieve
these goals. Goals can typically be achieved in some number of different ways,
even at the most abstract level. These different ways may be applicable only in
certain situations. A plan is thus an abstract description for achieving a goal,
in a specified situation (or context). The executable plan body is made up of a
combination of actions and sub-goal steps. (Depending on the system, plans can
also contain arbitrary code, in addition to subgoals and actions). The subgoals
then also have plans which realise them. If we start with a single goal, and
assume that:

– each goal has at least two plans that describe how to achieve it
– each plan contains at least three subgoals
– there is an abstraction depth of four

then there are over a million ways to achieve that single goal. This is incredibly
powerful! Also, the way in which these systems expand plans as needed, combined
with an ability to try alternative means to achieve a (sub) goal if a plan fails,
means the system is very robust to environmental change during execution. This
makes them extremely well suited to systems situated in dynamic environments,
although this characteristic is by no means necessary, in order to realise the
benefits of the flexibility and modularity inherent in the paradigm.

The inherent modularity of these kind of systems also makes them very suit-
able for evolving over time - an increasingly common phenomenon for com-
plex ICT systems. It is very common that a core system is developed quickly,
but then additions and extensions are added once the system is in use. Some
small experimental work we did some years ago, showed that modification of a

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 4–5, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Agent Oriented Software Engineering: Why and How 5

program was both easier and more localised, when an agent paradigm was used,
than when the program was developed using a traditional approach.

However in order to realise these advantages of the agent paradigm, systems
must be designed and developed in appropriate ways. This requires engineers
and software developers to think differently about the design, as compared to
Object Oriented approaches. There are of course many common principles. But
there are also aspects that require a different way of thinking.

Recognition of this need to think differently when using an agent paradigm to
build systems (combined with the frustration of seeing many student programs
that gained no advantage from the agent approach), led to the development of
the Prometheus methodology for developing Agent Systems. This was developed
by myself and colleagues at RMIT, in partnership with Agent Oriented Software,
who also needed such a methodology to assist their clients and customers in use
of their agent platform product, JACK. The Prometheus methodology has devel-
oped over more than ten years, and was one of the earliest detailed approaches to
building agent systems. Today there are a large number of Agent Oriented Soft-
ware Engineering methodologies, and an international journal devoted entirely
to this topic.

In this talk we will present a basic overview of the Prometheus methodology,
and some of the design models produced using this approach to designing an
agent system. Recent work comparing some of the most prominent approaches
- Tropos, O-MASE and Prometheus - on a common case study, has highlighted
the substantial common core within the approaches developed by these different
groups. There is current activity in standards bodies to try and standardise
various aspects of agent modelling, and it is possible that the next few years will
see further movement in this direction.

As the core of Agent Oriented Software Engineering coalesces somewhat,
there is also further development of various aspects such as design of teams,
social structures and organisations; automated testing and debugging; aspect
oriented development; and support for maintenance, amongst others. We will
review briefly some of these developments and directions.

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 6–13, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Coordinating Agents Plans in Multi-Agent Systems Using
Colored Petri Nets

Maryam Nooraee Abadeh1, Kamran Zaminifar2,
and Mohammad-Reza Khayyambashi3

1 Department of Computer Engineering, Islamic Azad University,
Abadan and Khorramshahr Branch, Khuzestan, Iran

2
Department of Computer Engineering, Islamic Azad University of Najaf Abad, Isfahan, Iran

3 Computer Department, Faculty of Engineering, University of Isfahan, Isfahan, Iran
shadab_nooraee@yahoo.com, zamanifar@eng.ui.ac.ir,

m.r.khayyambashi@eng.ui.ac.ir

Abstract. Applying coordination mechanisms to handle interdependencies that
exist between agents in multi-agent systems (MASs), is an important issue. In
this paper, two levels MAS modeling scheme and a language to describe a MAS
plan based on interdependencies between agents’ plans are proposed. Initially a
generic study of possible interdependencies between agents in MASs is
presented, followed by the formal modeling (using Colored Petri Nets) of coor-
dination mechanisms for those dependencies. These mechanisms control the
dependencies between agents to avoid unsafe interactions where individual
agents’ plans are merged into a global multi-agent plan. This separation, man-
aged by the coordination mechanisms, offers more powerful modularity in
MASs modeling.

Keywords: Agent Plan, Colored Petri Nets, Coordination Mechanism, Depend-
ency, Multi-Agent System.

1 Introduction

There are two main streams of research on software agents, namely the multi-agent
systems (MAS) and mobile agents (MA). Research on multi-agent systems (MAS) is
rooted in distributed artificial intelligence, and dates back to the fifties [3]. In a multi-
agent system, agents are autonomous, reactive, proactive and sociable. The idea of
agents as autonomous entities, which can interact with each other to solve problems,
has led to the development of interests in agent-based design paradigm for software
engineering [1].

A multi-agent system can be considered as a loosely coupled network of problem
solver entities that work together to find answers to problems that are beyond the
individual capabilities or knowledge of each entity [15].
Try to ensure that all members of the system act consistently, is critical in the MAS
design [4].

In its general terms, coordination is the art of managing interactions and de-
pendencies among activities, that is, among agents, in the context of MASs [5, 6].

 Coordinating Agents Plans in Multi-Agent Systems Using Colored Petri Nets 7

The coordination is highly dynamic, because it needs to be negotiate again almost
continuously during a collaborative effort. In other words, coordination policies
change according to the cooperation instance, or even during the evolution of the
same instance. Therefore, it is essential that coordination mechanisms be flexible
enough to handle the flexibility demanded by the dynamics of the communications
among the agents [7].

Agents can improve consistency by planning their actions. Planning for a single
agent is a process of constructing a sequence of actions considering only capabilities,
environmental constraints and goals. When writing a multi-agent plan, the syntax is
not much different from the single agent case, except that actions are labeled with a
unique id for the agent [24] and coordination constraints are applied. In our approach,
is focused on modeling MAS plan, from local agent plans with concerning to interde-
pendencies between individual plans.

Describing multi-agent plans has been considered as plan sharing or centralized
planning, where the objective is to distribute a global plan to agents executing them,
or as plan merging, where individual plans are merged into a global plan with consid-
ering coordination issues [15]. In particular, we want to be able to order actions across
plans so that overall consistency is maintained and conflicting situations are avoided
[24]. Figure 1 clearly, describe MAS planning architecture. In this paper is focused on
plans merging section and applying coordination policies.

The main idea is to separate the coordination mechanisms from the MAS modeling
where the multi-agent centralized plan from individual agents plans is made. In our
proposed schema, to design a MAS plan, at the top level are provided a set of local
agents plans without a great deal of detail coordination mechanisms. At the lower
level is provided a high degree of modeling detail in the form of Colored Petri Nets
that represent the global multi-agent system plan. In this way multi-agent systems
modeling, offer more powerful modularity. Also it is defined a modeling language for
specifying, modeling and documenting systems that describe the MAS global plan.
Using the language it is possible to automate MAS model building, just using the
description dependencies based file.

Fig. 1. MAS Planning Approach

8 M. Nooraee Abadeh, K. Zaminifar, and M.-R. Khayyambashi

To model the proposed coordination mechanisms, we use an approach based on
Colored Petri Nets. Petri Nets combine a well defined mathematical theory with a
graphical representation the dynamic behavior of systems. Furthermore, CPNs offer a
strong theoretical support for the analysis of an environment’s behavior and supple-
mentary simulation techniques. We use this tool to anticipate and test the behavior of
multi-agent systems before their implementation. For more information, some refer-
ences are [8, 9, 19, and 20].

This paper is structured as follows; section 2 discusses related research work.
Section 3 presents our agents plans coordination approach. Coordination mechanisms
modeled using CPN are presented in section 4. Section 5 discusses a language to
describe MASs plans. Section 6 presents a conclusion and mentions future works.

2 Related Work

Applying Petri Nets to MAS modeling has been an active research. [13] and [14] are
two papers that deal with agent behavior coordination. For example in [13], is intro-
duced a moderator coordination model to handle agents communication from the
organization level. A set of Petri net based moderators, each managing a single con-
versation, and a conversation server, which organizes moderators, are the moderator
parts. In contrast, our work does not draw a clear boundary along conversations, but
instead focuses on agent behavior from the view of an individual agent and from the
global view of the whole MAS; this provides a powerful modular modeling. Concern-
ing Petri net based MAS modeling, there also exists research work emphasizing
special modeling aspects [21], [22], [23] and [24], but with little emphasis on agent
behavior coordination. For example, [22] emphasizes model verification to check
whether a multi-agent plan is possible. Many existing research works focus on a high
level interpretation of agents and MASs as Petri Net models in a whole [10] and [11].
Such design does not address further details about agent coordination. Our work is
more generic than those presented above. We define a set of interdependencies among
tasks in different agents’ plans and associated coordination mechanisms (modeled
using high level PNs) that can be used in multi-agent systems, multi-user interaction
and virtual environments. Also a language to describe a MAS global plan is described
that is a description of a MAS model based on interdependencies between agents.

3 Coordinating Agents Plans

As already stated, this work intends to provide a two layers approach for modeling
MASs using CPN-based mechanisms to manage interdependencies among collabora-
tive problem solvers in MASs and guarantee that these dependencies will not be vio-
lated. The idea is that the designer of a multi-agent system will be concerned only
with the definition of tasks that any agent does in its local plans and their interde-
pendencies with the tasks in other agents' plans, and not with the management of
those dependencies.

In the proposed schema, a MAS is modeled in two distinct levels. In the first level,
the tasks in the agents' individual plans are defined and their interdependencies types

 Coordinating Agents Plans in Multi-Agent Systems Using Colored Petri Nets 9

are expressed. In the next level, interdependent tasks are expanded and the adequate
coordination mechanisms are inserted among them. During the passage from the local
plans to the global plan designing, each task in any agent's workflow which has inter-
dependency with another is expanded according to the model of Figure 2 [16].

According to [26], the five places associated to the expanded tasks represent the in-
terface with the resource manager and a task that executes in any agent plan is ex-
plained. Places request_resource, assigned_resource and release_resource associate
any task with resource manager and places execute_task and finish_task indicate,
respectively, the beginning and the end of the task.

Using CPN, it is possible to share simulation places and using colored token, dif-
ferent tasks are distinguished.

The main goal of our work is to construct the multi-agent global plan from individ-
ual local plans with no more focus on interdependencies, because once the interde-
pendencies are defined, the expansion of tasks in any agent workflow is according to
the model of Figure 2 and the insertion of coordination mechanisms can be auto-
mated. We use two general classes of interdependencies that have been expressed in
[17]: temporal and resource management.

Fig. 2. An expanded task in the local plan level

Temporal interdependencies establish relative order of execution between a pair of
tasks that exist in two different agents local plans and these types of dependencies
establish execution order of tasks. Coordination mechanisms associated to this kind of
dependency have execute_task as input place and finish_task as output place (Figure 2).

Exclusive relations between time intervals [17], has been used to define temporal
dependencies between tasks in different agents local plans in MASs [26]. For example
relation finish between taskA in agent1 plan and taskB in agent2 plan define that both
tasks must end together and if it is necessary that taskA start before taskB, the relation
is named finishA, and if it is not matter which task starts before, it is called finishB or
relation taskA during taskB is defined that two variations are possible. In the first one
(duringA), taskB can be executed only once during the execution of taskA. In the
second one (duringB), taskB can be executed several times.

In [17], three basic mechanisms for resource management are defined: Sharing,
Simultaneity, Volatility. For example Simultaneity indicates resource is available only
if a certain number of agents request it simultaneously.

In the following, the models for the coordination mechanisms related to finishA and
sharing dependencies are shown. The other dependencies are similarly modeled.

10 M. Nooraee Abadeh, K. Zaminifar, and M.-R. Khayyambashi

4 Modeling Coordination Mechanisms Using CPNs

However, a typical problem in the use of ordinary PNs is the state explosion, which
can occur in our context when the number of interdependencies increases. CPNs reduce
this problem because they generate simpler models, with less places and transitions.
Therefore, we modeled those using CPNs. In temporal dependencies models we focus
on a relevant piece of extended task model include execute_task and finish_task places.

The transitions called LogicA and LogicB represent the logistic of the tasks. They
are represented as non-instantaneous transitions with token reservation.

Figure 3 shows the coordination mechanism for the relation TaskB finishA TaskA
(with restriction on which task should start at the first). In the Figure, the arcs
1`JobA++1`JobB ensure that two different tasks (tokens of different colors) are avail-
able at the same time. Transition t2 ensure ending tasks concurrently. In order to
model the relation with the restriction that TaskB must start after TaskA (finishA) it is
necessary to dependence LogicB to the end of LogicA, ensuring that a token will be
sent to transition LogicB after the end of TaskA.

Fig. 3. Coordination model for Relation TaskB finishA TaskA

Fig. 4. Coordination model for Relation sharing

 Coordinating Agents Plans in Multi-Agent Systems Using Colored Petri Nets 11

Figure 4 shows the mechanism for sharing. 3 resources (tokens r) are going to re-
ceive if they are available in place res.

4.1 Simulation

Colored Petri Nets and Design/CPN Tools have been used for modeling, execution
and validation analysis to test these models, automatically or interactive. Design/CPN
Tools is an industrial-strength computer tool for building and analyzing CPN models.
Using CPN Tools, the behavior of these models using simulation, to verify properties
via state space methods was investigated. Also in this paper, validation analysis
method is used. Iterative simulations of fictitious cases were also examined, to ensure
that the model treats them correctly.

4.2 Generalization

It is possible to generalize the modeling approach. It can have different interpretations:

 These mechanisms can have expanded from "two" to "many" (more than two)
agents plans (Jobs). It means that N task in M local plans can have temporal or
(and) resource dependencies. For example taskA in agent1 plan and taskB in
agent2 plan and taskM in agentN plan have starts relation.

 Two tasks in two different agents’ plans can have more than one dependency.
Thus it is possible to composite mechanisms from the basic ones discussed
above. For example, taskA in agent1 plan and taskB in agent2 plan have startA +
duringB + simultaneity relations or sharing M + volatility N indicates that up to
M tasks may share the resource, which can be used N times only.

5 A Language for Definition Interdependencies of MAS Plan

A language that is corresponding to the MAS plan Model, based on interdependencies
between agents and coordination mechanism is presented. Building MAS model from
this descriptive language is a benefit of this language; also it is possible to automate
the passage from the first level to the coordination level of the MAS modeling using
these descriptive statements. A dependency is defined as according to the following
syntax:

AgentNamei.TaskName [Dependency Kind] AgentNamej.TaskName

It is necessary that tasks have the same name as the transitions representing them in
the local agents’ plans. When all agent dependencies are described, these set of state-
ments define the MAS model (global plan).

6 Conclusion

The coordination of interdependent activities in multi-agent systems is a problem that
should be addressed to ensure the effectiveness of the cooperation. The separation

12 M. Nooraee Abadeh, K. Zaminifar, and M.-R. Khayyambashi

between individual agents’ plans and dependencies with other agents' plans, and the
utilization of reusable coordination mechanisms are steps towards this goal.

Petri Nets, due to their support for modeling, simulation and analysis, have proven
to be a powerful tool for verifying the correctness and validating the effectiveness of
collaborative environments before their actual implementation [2, 12].

One of the next steps of this work is to automate the passage from the individual
plan to the sharing plan of models in a CPN simulation tool.

References

1. Jennings, N.R.: An Agent-Based Approach for Building Complex Software Systems.
Communications of ACM 44(4), 35–41 (2001)

2. Kinny, D., Georgeff, M.P.: Modeling and Design of Multi-Agent Systems. In: Rao, A.,
Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 1–20. Springer,
Heidelberg (1998)

3. Green, S., Hurst, L., Nangle, B., Cunningham, P., Somers, F., Evans, R.: Software Agents:
A Review. In: Intelligent Agent Group (IAG) report TCD-CS-1997-06, Trinity College
Dublin (1997)

4. Jennings, N.R.: Coordination Techniques for Distributed Artificial Intelligence. In:
O‘Hare, G.M.P., Jennings, N.R. (eds.) Foundation of Distributed Artificial Intelligence,
Sixth-Generation Computer Technology Series, pp. 187–210. Wiley, New York (1996)

5. Ciancarini, P.: Coordination models and languages as software integrators. ACM Comput-
ing Surveys 28(2) (1996)

6. Gelernter, D., Carriero, N.: Coordination languages and their significance. Communica-
tions of the ACM 35(2), 97–107 (1992)

7. Edwards, W.K.: Policies and Roles in Collaborative Applications. In: ACM Conf. on
Computer Supported Cooperative Work, pp. 11–20 (1996)

8. Murata, T.: Petri nets: properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1999)

9. CPN Tools, http://www.daimi.au.dk/CPNTools
10. Holvoet, T.: Agents and Petri Nets. Petri Net Newsletters 49 (1995)
11. Moldt, D., Wienberg, F.: Multi-Agent-Systems Based on Coloured Petri Nets. In: Proceed-

ings of 18th International Conference on Application and Theory of Petri Nets (1997)
12. Shoham, Y.: Agent-Oriented Programming. Artificial Intelligence 60, 51–92 (1993)
13. Hanachi, C., Blanc, C.S.: Protocol Moderators as Active Middle-Agents in Multi-Agent

Systems. Autonomous Agents and Multi-Agent Systems 8(2), 131–164 (2004)
14. Weyns, D., Holvoet, T.: A Colored Petri Net for Regional Synchronization in Situated

Multi-Agent Systems. In: Proceeding of First International Workshop on Petri Nets and
Coordination (PNC), Bologna, Italy, June 21–26 (2004)

15. Durfee, E.: Distributed problem solving and planning. In: Weiss, G. (ed.) Multi-agent Sys-
tems: a Modern Approach to Distributed Artificial Intelligence, pp. 121–164. MIT Press,
Cambridge (1999)

16. Van der Aalst, W.M.P.: Modelling and analyzing workflow using a Petri-net based ap-
proach. In: Proceedings 2nd Workshop on Computer-Supported Cooperative Work, Petri
nets and related formalisms, pp. 31–50 (1994)

17. Raposo, A.B., Magalhães, L.P., Ricarte, I.L.M.: Petri Nets Based Coordination Mecha-
nisms for Multi-Workflow Environments. Int. J. of Computer Systems Science & Engi-
neering (2000)

 Coordinating Agents Plans in Multi-Agent Systems Using Colored Petri Nets 13

18. Allen, J.F.: Towards a General Theory of Action and Time. Artificial Intelligence 23, 123–
154 (1984)

19. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Ba-
sic Concepts, vol. 1. Springer, Heidelberg (1992)

20. Examples of Industrial Use of CP-nets, http://www.daimi.au.dk/CPnets/
intro/exampleindu.html

21. Jennings, N., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and Develop-
ment. Autonomous Agents and Multi-Agent Systems Journal 1(1), 7–38 (1998)

22. Xu, D., Volz, R.A., Ioerger, T.R., Yen, J.: Modeling and Analyzing Multi-agent Behaviors
Using Predicate/transition Nets. International Journal of Software Engineering 13(1), 103–
124 (2003)

23. Murata, T., Nelson, P.C., Yim, J.: Predicate-Transition Net Model for Multiple Agent
Planning. Information Science 57/58, 361–384 (1991)

24. Vittorio, A., Ziparoand Luca, I.: Petri Net Plans. In: Fourth International Workshop on
Modelling of Objects, Components, and Agents (2006)

25. Sycara, K.: Multi-agent Systems. Intelligent Agents AI magazine 19(2) (Summer 1998)
26. Nooraee, M., Zamanifar, K.: Modeling Multiagent Systems Using Colored Petri Nets. In:

IADIS International Conference Intelligent Systems and Agents, pp. 85–91 (2008)

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 14–25, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Design of an Internet-Based Advisory System:
A Multi-agent Approach

Saadat M. Alhashmi

School of Information Technology, Sunway Campus, Monash University,
46150, Selangor, Malaysia

saadat.m.alhashmi@infotech.monash.edu.my

Abstract. With the emerging proliferation of information and communications
technology in the home and work environments, the provision of computer-
based medical advisory systems in healthcare could lead to huge savings to the
cost of caring for patients with chronic conditions, such as, diabetes, asthma and
hypertension. This paper proposes that an internet-based medical expert system
could facilitate a far more efficient system in eliminating the number of unnec-
essary visits to General Practitioner (GP) for routine consultations. An internet-
based intelligent system implementing a variety of functions carried in GP
consultations is, thus proposed. The system design is based on multi-agent ar-
chitecture, which attempts to replicate the roles of each person in a typical GP
consultation environment. The role of clinical decision-making is carried out by
a fuzzy inference engine linked to a knowledge-base of patient records. The
management of diabetes is presented as a case study in the paper.

Keywords: Multi-agent, advisory system, diabetes, fuzzy logic.

1 Introduction

The information explosion has brought abundant benefits with it, but in the hindsight
it also brought an urge and an urgency to make decisions in real time. This decision-
making could be in the form of information retrieval, finding the best deal for an
excursion, ordering something or asking an expert for advice. Fuzzy Logic, Neural
Networks, for example, are but a few of the tools within artificial intelligence that
have found many applications to facilitate decision-making.

In this paradigm, a user is required to specify their query, which is then compared
with the rule-base or ‘built in intelligence’. In spite of great advancements in the effi-
ciency of decision-making tools, most of these tools can further be improved. Based
on the literature review, it was envisaged that a system depicting characterisation of
human intelligence such as autonomy and co-operation would immensely help in
demonstrating the task delegation to computers.

Another interesting domain is the multi-agent environment that stemmed mainly
from the distributed computing and artificial intelligence community. This paper
picks up the same theme from a different perspective, that is, it looks into proposing
and constructing a system, which can be a generic model for seeking expert advice in
a distributed environment using multi-agents. The proposed work will be exemplified

 Design of an Internet-Based Advisory System: A Multi-agent Approach 15

on one of the many issues in healthcare domain. The rationale is also to assess the
improvement in performance in this domain in particular and other domains in
general.

Healthcare domain choice was influenced by several factors. There has been grow-
ing pressure on the healthcare industry to cut down costs and improve quality. An
ageing population, declining death rates and improved standards of living have added
to this pressure. Furthermore, the delicate and highly sensitive nature of this domain
requires that there should be absolutely no compromise on quality while looking for a
reduction in costs. We also hold the view that a system should incorporate the features
of autonomy and co-operation, and expert knowledge. Some of the many functions it
could help in facilitating are: Autonomous negotiation, Task delegation, Keeping-an-
eye functionality, exploitation of expert knowledge for decision-making.

In this paper, a co-operative autonomous decision-making system is proposed with
autonomy and co-operation facets of human intelligence. Fuzzy logic is used to depict
decision-making and the system is developed on a multi-agent platform to provide
autonomy and co-operation.

In our view, a co-operative autonomous decision-making system must at least sat-
isfy the autonomy, co-operation and intelligence. For the purpose of this research,
these can be explained as:

Autonomy: The system must make decisions on the user’s behalf; unlike a traditional
system where the system needs a command from an input device. More specifically,
the autonomous system must have control over its internal state and actions. For ex-
ample, a traditional decision-making system remains passive to execute specific tasks.
However, an autonomous system would execute the assigned tasks on its own for the
achievement of predefined goals.

Intelligence: The decision-making system must exhibit intelligent behaviour by ap-
plying expert knowledge to manipulate the environment. This would involve recog-
nising the relative importance of different elements in a situation and then responding
in a flexible and quick manner to fulfil predefined objectives.

Co-operation: The autonomous and intelligent decision-making tool must also dem-
onstrate co-operative behaviour. This means that the individual agents within the
system would work to achieve the overall goal of the system without conflicting with
each other. This builds upon the concept of socialability, i.e. the agents would
autonomously communicate and negotiate with each other. We realised that the tradi-
tional technologies lack autonomy and co-operation; it was decided to propose a sys-
tem by combining fuzzy logic and multi-agent technologies. Fuzzy logic was chosen
to build our system mainly because according to Lotfi Zadeh cited by Steimann [1, 2]

Indeed, the complexity of biological systems may force us to alter in radical ways
our traditional approaches to the analysis of such systems. Thus, we may have to
accept as unavoidable a substantial degree of fuzziness in the description of the be-
haviour of biological systems as well in their characterisation. This fuzziness, dis-
tasteful though it may be, is the price we have to pay for the ineffectiveness of precise
mathematical techniques in dealing with systems comprising a very large number of
interacting elements or involving a large number of variables in their decision trees.

Although many intelligent systems have incorporated the learning aspect, and are
thus learning-based systems, in our view, the system we are proposing does not need

16 S.M. Alhashmi

to have learning capabilities if expert knowledge is already built into the system. The
idea behind this argument is that the expert will monitor the behaviour of the system
on a regular basis and tune the fuzzy rules if necessary, rather than the system learn-
ing on its own in this highly complex domain.

Figure 1 below is an overview of the system.

Autonomy & Cooperation

Autonomy, Cooperation &
Intelligence

Human Interaction

Fig. 1. System overview

N e u ra l N e tw o rk sG e n e tic A lg o r ith m s F u z z y
L o g ic

Q u a lita t iv e
R e a s o n in g

M o s t S u ita b le D e c is io n M a k in g A p p ro a c h : F u z z y L o g ic

In te ll ig e n t D e c is io n
M a k in g

A u to n o m y C o o p e ra tio n

M u lt ia g e n t T e c h n o lo g y

P ro p o s e d A u to n o m o u s C o o p e ra t iv e D e c is io n M a k in g S y s te m

Fig. 2. Autonomous co-operative decision-making system

The aim was to ensure that Fuzzy Logic and multi-agents system complement each
other and after reviewing different decision-making technologies we came up with the
model shown in Figure 2. The interesting thing to reiterate at this stage is if we are
applying this model in domain where we need a different set of skills i.e. learning
behaviour or qualitative reasoning we can chose Genetic Algorithm or Qualitative
Reasoning and complement it with multi-agents.

 Design of an Internet-Based Advisory System: A Multi-agent Approach 17

2 The Integrated System

The integrated system would demonstrate: how specialist advice that is underpinned
by rules based on the knowledge and expertise of the expert. how complex nature of
the interaction in that there are concurrent multiple roles and/or actors that require
independent dynamic organizational capability to handle the logistics. how advice is
dynamically determined using current data provided by users and the above decision-
making technologies to provide individualized and tailored prescription. The system
would have to be dynamic, capable of making decisions at run time, not requiring
them to be wired in at design time, like traditional distributed systems [8]. They
would have to perform independent actions on behalf of their owner or user, and work
out how to achieve their design objectives, autonomously and dynamically [8]. This is
because they are dealing with current, individual data. Therefore, the advice needs to be
personalized according to each specific case. At the same time, it has to be expert advice.

2.1 Assigning Agents

Our focus was on replicating the real world problem as is and mapping it onto the
chosen technology. Every agent in the system replicates functions of the real world.
For example, the Patient Agent of the Diabetes Advisory System replicates the actions
of the patients as they would perform in the absence of this autonomous system. In
such a scenario; Patient Agent is signifying and replicating the patient. Requesting
advice after giving details about their glucose level, activity and diet, receiving this
advice, giving details about their schedule, etc., are all examples of actions that have
been simply mapped onto agents. Similar activities were grouped as follows. These
concepts are illustrated in Figure 3. Six agents were identified based on similar activi-
ties: Patient Agent, Doctor Agent, Expert Agent, Doctor Schedule Agent, Reminder
Agent and Stock Agent. The aim was to ensure that an adequate number of agents
would be used, such that the objectives of the system were being met, that a particular
agent was performing similar type of activities, no activity was being repeated or
overlooked and there was clarity and coherence in the system.

Patient

Doctor

Place Order
with Supplier

Receive
Information

about Insulin
Requirements

Enter
Availability

Arrange
Meeting

Inform about
Patients Insulin

Quantity

Monitor
Routine Advice

Given by
System

Alert Doctor in
Emergency

Send Non-
routine Advice
for Reminder

Receive
Doctors

Advice- Non-
Routine

Receive
Patient

Information

Advice Patient
Routine

Send Routine
Advice for

Record

Send Routine
Advice for
Reminder

Login and
Authentication

Display Advice

Receive
Advice

Arrange
Meeting

Request
Advice

Receive
Routine Advice

Send
Reminder to

Patient

Receive Non-
routine Advice

Supplier

Patient Agent
Doctor Schedule

Agent

Doctor Agent Stock Agent

Reminder Agent

Expert Agent

Fig. 3. The diabetes system use case

18 S.M. Alhashmi

2.2. System Level Design

At the agent system level design stage, two models are presented. First is the agent
system architecture that describes agent interaction diagrams and second, the system
plan (sequence diagram) using the Agent-based Unified Modelling Language
(AUML) [9] concept. AUML is an extension of Unified Modelling Language (UML)
[10], which has already gained wide acceptance for the representation of engineering
artefacts. AUML basically synthesises a lot of agent-based methodologies.

2.3 System Plan Model

In the previous section, agents are identified for the system. This section shows the
dynamic interaction of agents. This model in Figure 4 is adapted from AUML. The
system plan model shows the different roles of agents, how they are interacting with
one another and the communicative protocols between them. In order to express in
detail the communication between different agents this research has followed the
FIPA [11] guidelines. The communication protocols used in this research are: inform,
request and propose protocols. For example, in Figure 4, the Patient Agent sends
information about the patient’s activity level, diet and glucose level to the Expert
Agent, and requests for insulin advice, the communication is two-way and the proto-
col used is Request [12]. Another protocol used is the Inform protocol [12], for exam-
ple, when the Expert Agent informs the Reminder Agent about the insulin advice.
This is a one-way communication. The nature and sequence of individual interactions
is explained in detail in the next section.

P atient A gen t Expert A gen t D octor Ag ent D oc tor S ch edu le Age nt R em in der A gent S tock Ag ent

R equ es t

In fo rm

Info rm

Inform

Inform

P ropo se

Tex t M e ssag e on M ob ile

Inform

Fig. 4. Agent interaction sequence diagram

2.4 Agent Level Design

This section focuses on the design of individual multi-agent. We will describe the
design of one agent. A Class-Responsibility-Collaborator (CRC) index card [13] is
used to represent collaboration. CRC cards provide an effective technique for

 Design of an Internet-Based Advisory System: A Multi-agent Approach 19

exploring the possible ways of allocating responsibilities and give high level descrip-
tions of functions to classes and the collaborations that are necessary to fulfil the
responsibility [14]. The strength of CRC cards lies in the fact that, when utilised by a
team, the interaction between the members can highlight missing or incorrect items in
the class. Also, the relationships between classes are clarified when CRC cards are
used.

Expert Agent: The Expert Agent has the fuzzy rules that form the expert system. This
section is an explanation of the interactions of Expert Agent shown in Figure 4.
Table 1 is an Expert Agent CRC card.

Table 1. Expert Agent CRC Card

Expert Agent CRC Card
Responsibilities Collaborations

Advise the patient
Patient Agent

Send insulin advice Doctor Agent
Send insulin advice Reminder Agent

Table 2. Expert agent collaborations

Agent Name: Expert Agent
Sending Message to Receiving Message

from
Patient Agent
Message type: Inform
Content: Insulin Advice

Patient Agent
Message type: Request
Content: Activity level,

Glucose, Diet.
Doctor Agent
Message Type: Inform
Content: Insulin Advice
Reminder Agent
Message Type: Inform
Content: Insulin Advice

Responsibilities
The Expert Agent receives requests for insulin advice from the Patient Agent. It ad-
vises the Patient Agent and sends this information to the Reminder Agent as well, so
that the Reminder Agent can send a reminder to the patient regarding when to take
what quantity of insulin. This information is also sent to the Doctor Agent for its
record. The Doctor Agent monitors this value. This action acts as a double check.

Collaborations
As seen in Table 1, the Expert Agent communicates with the Patient Agent, Doctor
Agent and Reminder Agent. The collaborations between them are shown in the
Table 2 in the form of sending and receiving messages.

20 S.M. Alhashmi

3 Development

The focus of this section is on the development phase. As discussed earlier the overall
goal is to reduce routine consultations with the doctor. To achieve this goal, it was
decided to divide this into four sub-goals so that this task can be achieved easily.

3.1 Agent Plan Model

The agent plan model shows the agent's internal tasks and the data structures used for
agent interaction. The goal of the agent plan model is to show the activity of each
agent in detail, the state of the agent and its interaction with different agents along-
with the type of message. Standard AUML symbols are used. We will discuss the
working of one agent, patient agent. The different communications as shown in
Figure 5 are:

C 1: Requests advice for insulin intake from Expert Agent.
C 2: Throws an exception, ACL (Agent Communication Language) message
not understood.
C 3: Throws an exception, ACL message not understood.
C 4: Proposes meeting with Doctor Schedule Agent.

Figure 5 is an agent plan model that shows the Patient Agent’s collaborations and
interactions with other agents. The initial state of the agent is waiting until a condition
is fulfilled. The first condition is, patients enter their ID and password for the authen-
tication process, and then their glucose level, activity and diet for advice from the
Expert Agent for insulin. Patients also enter their schedule, which would be used for
meeting negotiation.

W a i t in g

A C L N o t U n d e r s t o o d
A C L N o t U n d e r s t o o d

E x p e r t A g e n t

C 1C 2C 3C 4

D o c t o r S c h e d u l e
A g e n t

R e q u e s t a d v ic eP r o p o s e m e e t in g

Fig. 5. Patient Agent - Agent Plan Model

3.2 Communicative Act amongst Agents

This section explains how agents are communicating with each other. The agent inter-
actions shown below are based on the Agent Interaction Sequence Diagram (figure 4).

 Design of an Internet-Based Advisory System: A Multi-agent Approach 21

Here, more details are given regarding the interaction between the individual agents
as well as an explanation of these interactions. This section is based on the Communi-
cation Act Library (CAL) of FIPA . According to FIPA, agent communications have
to adhere to a standard procedure, as explained in the following sections.

3.3 Patient Agent and Expert Agent Communication

Figure 6 is a detailed explanation of the interactions shown in Figure 6. According to
FIPA protocol, agents have to adhere to a standard procedure. In Figure 6 Patient
Agent sends request to Expert Agent, using FIPA Request protocol [11] and the con-
tents of the message are Activity level, Glucose and Diet. Once the Expert Agent
receives this request it can either refuse it or agree to it. If it refuses, then that is the
end of the communication. If it agrees, then, based on the knowledge or fuzzy rules
the Expert Agent is linked to, it advises the Patient Agent.

Implementation and evaluation of this system is carried out mainly taking into con-
sideration:

• Ease of use
• Effectiveness of advice

It was also considered that the system developed should be as user friendly as pos-
sible, as majority of the patients may not necessarily be IT savvy and this system
should complement in easing their lifestyle and also save the doctor's time from regu-
lar consultations. This system is developed taking into consideration that diabetic
patients can seek medical advice from the comfort of their homes. The importance
and reason for envisaging this system has already been discussed in earlier sections.

Fig. 6. Patient Agent and Expert Agent Communication Diagram

22 S.M. Alhashmi

The patient using the system should have a basic knowledge of diabetes, know how
to measure glucose and in which category of diabetes they fall into, as different peo-
ple have different insulin sensitivities to normalise values that represent the liver. This
means that different people respond to insulin in different ways. People with insulin
resistance (low insulin sensitivity) require much more insulin to change their blood
glucose concentration than people with high insulin sensitivities (low insulin resis-
tance). In other words, with low insulin sensitivity a lot of insulin is required to have a
small effect on the blood glucose profile, while with a high insulin sensitivity a small
amount of insulin is required to have a large effect on the blood glucose profile. The
liver value represents the insulin sensitivity of the liver while the peripheral value
represents the insulin sensitivity of the rest of the body.

4 Intelligence in Agents

The intelligent aspect of the proposed system was implemented using a rule-base
design, with fuzzy categorisation for both inputs and outputs. A rule-based approach
was chosen because it is a tried and tested approach used in the field of medical ex-
pert systems [15, 16]. Figure 7 is a fuzzy membership function for blood glucose
level. This figure starts from hypo stage or low stage of glucose level where glucose
level is very low and the patient is advised to reduce insulin intake and eat something
as prescribed by the doctor to attain the minimum level of glucose in his blood.

Hypo HyperLow OK High

Blood Glucose Level(mmol)

P
os

si
bi

li
ty

 o
f

M
em

be
rs

hi
p

5.0 6.0 15
10

8.0 12 14

Fig. 7. Membership Function for Blood Glucose

Figure 8 is a fuzzy membership function for activity, it starts from sleep mode
where the patient burns the least amount of glucose, to very strenuous, where the
patient burns maximum glucose.

Figure 9 is also a fuzzy membership function that recommends the insulin dosage.
The fuzzy rules shown in Figure 7, 8 and 9 can further be explained below:

IF the activity is SLEEP and the glucose level is HIGH then INCREASE
Insulin.

IF the activity is VERY STRENUOUS and the glucose level is VERY LOW
then LARGE DECREASE Insulin.

 Design of an Internet-Based Advisory System: A Multi-agent Approach 23

P
os

si
bi

li
ty

 o
f

M
em

be
rs

hi
p

Sleep Very Light Light Strenuous Very Strenuous

Next Activity level

0.0 1.0 2.0 3.0 4.0

Fig. 8. Membership Function for Activity

P
os

si
bi

li
ty

 o
f

M
em

be
rs

hi
p

Recommended Dosage Change (mmol)

Large Decrease Decrease No change Increase Large increase

-4.0 -2.0 0.0 2.0 -4.0

Fig. 9. Membership Function for Recommended Dosage

The next section focuses on the implementation of the system. There are several
issues to be considered in order to implement an agent environment, such as agent
management, security, services and directory. The agent environment provides the
criteria of behaviours, communication, distribution and openness. This comprised of
several combinational technologies, such, as concurrency and distribution [17].

5 Conclusion and Discussion

Diabetes, as mentioned in the introduction to this paper, is indeed a very serious prob-
lem. It is intended that the system will bring ease into the life of diabetics, at the same
time freeing up the resources of the healthcare providers. In other words, the possibil-
ity to provide anytime-anywhere diabetic advice would make a diabetic feel at ease as
they can always get in touch with their primary health care provider. And the health-
care providers can focus on vital and non-routine tasks.

The system, from a system-design perspective, shows evidence of a flexible de-
sign. What this means is that it possesses the elements of scaling up, functioning in a
distributed environment, and above all, autonomy. This puts forward a framework
where multi-agents and humans can work together to achieve desired goals. The

24 S.M. Alhashmi

experience learned from developing this system so far has proved the concept that the
fuzzy and multi-agent technologies can provide diabetes advisory service from a
remote location. The steady expansion of the internet and the work on platform-
independent software is making the remote service implementation faster and more
cost-effective. It can also be argued that because of the nature of the proposal, this
framework can be adapted to other clinical advisory problems.

This research was undertaken to look for directions to improve decision-making in
healthcare systems. The idea was to build on the benefits of traditional decision-
making technologies and complement them with other new technologies. Therefore,
the aim was to exploit the advantages of different domains. This study, like every
other study, is limited by its scope. The scope of this study was to present a frame-
work to improve decision-making in the healthcare domain. This did not include
implementation and evaluation of this framework in the real world. In order to remain
focused on our objective, we have restricted the research to construction of the
framework and envisaging the advantages that would accrue on its implementation.

The argument goes that delegating tasks to computers is a compromise on quality
of service of healthcare service providers. And there is a trade-off when we are talk-
ing about delegating even routine tasks to computers. But in reality, with the limited
resources complemented with an ageing population we need a paradigm shift, which
can be achieved by meeting stringent requirements. As mentioned earlier, the main
goal of majority of the works reported here was to optimise the cost of care in the
healthcare domain by empowering a person to use the expert’s knowledge captured in
the decision-making tool. In our case, this person was the patient whereas, in the
majority of these works, this person was the doctor.

The proposed work accordingly involves not just the understanding of computer
technology but also the social and behavioural impact this would have on the overall
process. Another important aspect is, how new technology is introduced in the estab-
lishment. This task becomes even more daunting when it involves the healthcare
domain because of obvious reasons. Evaluation in the real world also depends on
other external factors such as: legislation, economic constraints, social and ethical
aspects, for example. However, the focus of our work was on impact and outcome and
benefits these systems can bring about rather than looking into all the aspects we have
briefly touched above. And in reality these issues would have to be dealt with on a
case-by-case basis and the developed system may not offer much help. Nevertheless,
the developed system would provide a framework in which these issues and questions
can be identified and articulated more easily.

References

1. Phuong, N.H., Kreinovich, V.: Fuzzy logic and its applications in medicine. International
journal of medical informatics 62(2-3), 165–173 (2001)

2. Steimann, F.: Fuzzy Set Theory in Medicine. Artificial Intelligence in Medicine 11, 1–7
(1997)

3. IDF: Diabetes On The Rise World-Wide, http://www.docguide.com
4. Diabetes Basics - What is Diabetes?, http://www.lifeclinic.com
5. Daly, H., et al.: Diabetes Care: A problem Solving Approach. Heinemann Professional

Publishing (1984)

 Design of an Internet-Based Advisory System: A Multi-agent Approach 25

6. Hill, R.D.: Diabetes Health Care. Chapman and Hall, London (1987)
7. Lasker, R.D.: The diabetes control and complications trial. Implications for policy and

practice. New England Journal of Medicine 329, 977–986 (1993)
8. Wooldridge, M.: An Introduction to MultiAgent Systems, p. 348. John Wiley & Sons,

Ltd., Chichester (2002)
9. Odell, J., Parunak, D.V.H., Bauer, B.: Representing Agent Interaction Protocols in UML.

Agent_Oriented Software Engineering, pp. 121–140 (2001)
10. Object Management, G, Unified Modelling Language Specification Version 1.3, in OMG

Document (1999)
11. FIPA Communicative Act Library Specification, http://www.fipa.org
12. FIPA Request Interaction Protocol Specification, http://www.fipa.org
13. Wirfs-Brock, R., Wilkinson, B., Wiener, L.: Designing object-oriented software, p. 341.

Prentice-Hall, Englewood Cliffs (1990)
14. Bennett, S., McRobb, S., Farmer, R.: Object-Oriented Systems Analysis and Design using

UML. McGraw Hill, New York (1999)
15. Frenste, J.H.: Expert Systems and Open Systems. In: Proc. AM Assoc. Medical Systems

and Informatics
16. Pham, T.T., Chen, G.: Some Applications of Fuzzy Logic in Rule-Based Expert Systems.

Expert Systems 19(4), 208–223 (2002)
17. Bradshaw, J.M.: Software agents, p. 480. MIT Press, Cambridge (1997)

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 26–33, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards Virtual Epidemiology: An Agent-Based
Approach to the Modeling of H5N1 Propagation and

Persistence in North-Vietnam

Edouard Amouroux1,2, Stéphanie Desvaux3,4, and Alexis Drogoul1,2

1 IRD UR079 GEODES, 32 Avenue Henri Varagnat, Bondy - France
2 Equipe MSI, IFI, 42 Ta Quang Buu, Ha Noi - Viet Nam

3 CIRAD, Campus International de Baillarguet F-34398 Montpellier - France
4 PRISE Consortium in Vietnam c/° NIVR, 86 Truong Chinh, Ha Noi - Viet Nam

{edouard.amouroux,alexis.drogoul}@ird.fr,
stephanie.desvaux@cirad.fr

Abstract. In this paper we claim that a combination of an agent-based model
and a SIG-based environmental model can act as a “virtual laboratory” for
epidemiology. Following the needs expressed by epidemiologists studying mi-
cro-scale dynamics of avian influenza in Vietnam, and after a review of the epi-
demiological models proposed so far, we present our model, built on top of the
GAMA platform, and explain how it can be adapted to the epidemiologists’ re-
quirements. One notable contribution of this work is to treat the environment,
together with the social structure and the animals’ behaviors, as a first-class
citizen in the model, allowing epidemiologists to consider heterogeneous micro
and macro factors in their exploration of the causes of the epidemic.

Keywords: Multi-Agent Systems, Agent-Based Models, epidemiological mod-
els, environmental models, GAMA platform.

1 Introduction

Over the past few years, avian influenza spread from Asia to Europe and parts of
Africa. Following this proliferation, a certain downturn has been observed thanks to
concerted measures (improving hygienic practices, vaccination programs, etc). Yet,
total eradication remains elusive. This disease remains a major threat to both the
economy and public health. Within this context, the challenge for current epidemiol-
ogy is to eradicate the virus, which requires understanding the various factors that
may impact the proliferation of this infection. In particular, the local propagation of
the virus and its re-emerging mechanisms are yet to be fully understood. Current
hypotheses point an accusing finger towards: the presence of wild birds traditional
farming practices and trading activities. None of these have been validated as of yet.
Recent studies [1] suggest that human activities, particularly within the agricultural
system, in dynamic interaction with the environment, play a key role in the spread of
the disease at local levels (within a given district). To have a better understanding of
these mechanisms, one of the possible methods is for epidemiologists to consider

 Towards Virtual Epidemiology 27

simulated models of reality and to test hypotheses concerning the environment, the
social structure, the behaviors of the birds, etc. Unfortunately, existing modeling
techniques have not reached a level of maturity appropriate for such an exploratory
use of simulation. The aim of this paper is to present an Agent-Based Modeling
(ABM) approach, while detailing how it can be used to help epidemiologists answer
their questions. After presenting the context and requirements of this work, we will
review existing epidemiological models, explain why they do not fit the requirements
and why we have chosen to develop our own tools on top of a multi-agent platform.

2 The Context of Avian Influenza in Vietnam

Avian influenza (HPAI) epidemics occurred recurrently in Vietnam since mid-2003.
While the outbreaks in both North and South Vietnam are similar the underlying
variables of their respective poultry production industries are different: climactic and
environmental conditions, variety of circulating virus strain [2] and poultry produc-
tion organization [3] are distinctive in each region.

2.1 Two Epidemiological Questions to Address

As of today, many basic epidemiologic questions (about avian influenza) still need to
be answered. At a macro level, propagation is not precisely understood but the general
tendencies are. At the micro scale (e.g. village or commune level), the explanations of
propagation mechanisms are hazy at best. Understanding what is happening at these
micro-levels is probably the key to controlling the epidemic. Hence many investiga-
tions are focusing on them, particularly on these key questions:

(1) Propagation mechanisms: how does the virus propagate locally (from birds-to-
birds, humans, environments, farms, markets, etc.)?

(2) Persistence mechanisms: how can the virus re-emerge in a previously uninfected
area, sometimes months after the end of the previous wave of the epidemic?

2.1.1 Local Propagation Mechanisms
Both mechanisms can be explained by the presence of wild birds [4] and by trading
activities. Other recent hypotheses concern the role of the agro-system. Recent poli-
cies focus on small farmers for their lack of biosecurity. Studies are also concentrat-
ing on semi-industrialized farm–as they have a much wider span of influence–yet
biosecurity is low. As fully industrialized farms have adopted modern, state-of-the-art
biosecurity systems, they present a lesser concern for the experts. Whatever the con-
sidered production sector is, the entire agro-system (the farm, suppliers and custom-
ers) is being monitored extensively by epidemiologists.

2.1.2 Re-emergence, or Persistence Mechanisms
Re-emergence is another concern. The prevailing hypothesis is that wild birds act as
reservoirs but validation is lacking at present [4]. Another hypothesis concerns the
environment itself as a reservoir. In-vitro experiments are currently being carried out
on the persistence of H5N1 within the environment and especially in water [5]. It has
been demonstrated that avian influenza viruses are likely to remain infective several
months while in places like ponds [5].

28 E. Amouroux, S. Desvaux, and A. Drogoul

2.2 Addressing Epidemiological Questions through Simulated Experiments

2.2.1 Towards Simulated Experiments
Local-scale propagation, persistence and re-emergence processes are a complex matter
where many actors (birds, domestic or not, environment, human activity, etc…) inter-
vene. Unfortunately, the data that has been produced to date is insufficient in term of
completeness and reliability. This situation will probably remain unchanged in the near
future. To have more reliable data, in-vitro studies are being conducted, but the condi-
tions are too far from reality to be easily transposed to field reality. Since neither field
nor in-vitro studies can be completely satisfactory, experts turn towards models and
simulation experiments to validate their hypotheses, and explore new ones.

2.2.2 Requirements for ”Virtual Epidemiology” Experiments
As we will see in the next section, existing modeling techniques are not really suited
to such “in silico” experiments. Indeed, the ideal tool would need to respond to sev-
eral requirements expressed by epidemiologists. The most important are listed below:

(1) The environment should be represented extensively together with its own dynam-
ics. This representation should also enable the use of various and heterogeneous
descriptions (geographical, social, ecological, etc).

(2) Epidemiologists need the ability to work both at the population level and directly
on models of individuals, depending on the hypotheses requiring validation.

(3) Interactions at the population or individual levels, but also with the environment,
should be modeled explicitly, since a change in these interactions may have an
impact on the dynamics of the epidemic.

(4) These data are usually expressed using heterogeneous formalisms that the expert
needs to be able to reuse in the modeling of the system.

(5) The simulation platform should be able to recreate an environment in which
“virtual experiments” could be run (exploration of parameters, etc.)

3 Epidemiological Models: A Brief Review

In this section, we review the existing epidemiologic models in the light of these
requirements. Although the literature on the subject is quite important, we will see
that most of the offers do not fulfill them completely yet.

Table 1. Summary of the relationships between questions and models

How to … Model Referece

Represent and study epidemics at a global level?
SIR
Bayesian Networks
HMC

Yorke 79
Abbas 04
Durand 99

Account for the heterogeneity of the population? Micro-simulation Artzrouni 01

Represent contact patterns?
Cellular automata
Social networks

Turner 01
Ghani 07

Represent different individual behaviors? Individual based Wilensky 98

Study the role of the environment?
Agent based
Agent based + GIS

Muller 04
Badariotti 05

Enhance the representation of the environment? Agent based + GIS Badariotti 05

 Towards Virtual Epidemiology 29

Although many types of model have been proposed and used for epidemiological
ends, every one of them still lacks the ability to address some of the requirements
expressed by epidemiologists in this type of research (see 2.2.2).

It is plain that global models such as SIR [6], bayesian networks [7] or hidden
Markov Chain [8] will not work when considering small-scale situations. Micro-
simulation, [9] & [10] will work, but lacks the ability to take situatedness into
account. This can be addressed by cellular automata [11] or social networks [12],
depending on the level of complexity to be modeled. These models cannot represent
fully heterogeneous agents (internal state + behaviors)–while ABM [13] does bring
this capacity to the table. Finally, this kind of model generally lacks a detailed expres-
sion of the environment–among our top concerns in this application. To address this
issue, computer scientists, [14] & [15], have proposed the joint use of ABM and GIS
but they have not yet fully implemented this idea.

Thus, the natural choice for us, was to follow an agent-based approach, coupled
with a detailed and flexible representation of the environment based on a combi-
nation of grids and GIS. Additionally, we decided to make the environment (and its
components) a “first-class citizen” of the model, provided with its own attributes and
behaviors, rather than just considering it as a topological surface, This extension to
“classical ABMs” will be described in the next section through the presentation of
the HPAI in North Vietnam model built in cooperation with epidemiologists.

4 Conceptual Model of Avian Influenza Propagation

In this section, we introduce the context of this research, followed by the representa-
tion of the environment and actors. All the choices made in accordance with epidemi-
ologists and field specialists will be explained.

4.1 Frame of the Epidemiologic Study

The study takes place in North Vietnam, where epidemiologists focus on “local”
mechanisms, i.e. mechanisms that occur at a scale comprised between the village and
the district levels (around 50 km2). The model is then geographically limited by the
bounds of a province (a few hundreds km2). The main geographical entity is the vil-
lage, which is considered by epidemiologists as a “coherent epidemiologic unit”.
Their hypothesis, present in the model, is that communes and districts are not really
relevant to consider when it comes to studying the local causes of propagation. This
assumption may however be easily revised in future occurrences of the model. As the
environment may be a reservoir for the virus, we will consider that every place may
allow virus survival. In addition all entities in the model can be also infective.

The “village” environmental unit
A “ traditional” Vietnamese village consists of an inner-village space with a main
street, a few dozen to more than a hundred households with some poultry (traditional
farms) and pets. This inner space is surrounded by rice fields, watered lands (which
enter the village), other cultures and is protected from the flooding by a dike. The
organization of the village is described in [16] while statistic will be provided by the
Vietnamese census and longitudinal surveys currently conducted.

30 E. Amouroux, S. Desvaux, and A. Drogoul

The environment
The surroundings of the village consist of agricultural and “natural” lands (river,
forest, etc.). As we do not focus on long distance propagation, we consider this distant
space as homogeneous. Conversely, the inner-village and agricultural lands are repre-
sented in detail, especially the possibility that the latter may act as a reservoir for the
virus. According to epidemiologists, viral dynamics within the environment are sus-
ceptible to: altitude, Ph, temperature, solar exposure, level of organic matter present
in water, watered or not. These parameters define the ecological dynamics of the
system. These parameters vary greatly in natural or cultured land we can consider
them to be static in the inner village and roads.

4.2 Relevant Actors

Actors of the pathogen system act at different scales and are organized in 2 main
structures: the village and the poultry production chain. The other levels of organiza-
tion (like administrative levels) are neglected in the model, as they do not impact local
scale dynamics.

Actors of the Traditional Village
In the village important actors are organized around the farm. The type and dynamics
of both are defined according to the production type and the production sector (see
below).

Farm and markets
We can classify farms by their size and production techniques in four sectors accord-
ing to [17]:

• Traditional farming: mixed poultry, local scale interactions, no bio-security at all.
• Semi-industrial & industrial: targeted production, district to province size scale

interactions, low/medium bio-security level (medium/high for industrial farms).
• Fully integrated: targeted production, province size scale interactions, sophisti-

cated bio-security systems (thus, not considered in the model).

The production type and sector determine most of the farm’s characteristics in
terms of herd (size, lots organization, vaccination coverage, species and breeds), the
type of premises (caged, fully confined, pond), which impacts the bio-security level,
etc. They also determine the dynamics of the farm and its acquaintances (processing
chain).

Markets are also a key location within the village. It acts both as a reservoir for the
virus and an exchange place, as there is extensive contact between processed and
living poultry. The latter can be brought back home newly infected if not sold.

Poultry
According to experts, all the poultry within a flock are very similar in terms of

behaviors (gregarious animals), and characteristics (homogeneous lots). So we can
aggregate these individuals and represent only the poultry flock. This, plus homoge-
neous mixing occurring within the flock allow us to represent the virus transmission
within the flock with a SIR model. A traditional farm’s flock will be addressed by
developing an adapted SIR model as they are not homogeneous lots. The flock behav-
ior depends on the farm type and sector, the poultry can be confined, access an adjoin-
ing or distant secured zone (a pond, channel, etc), or be free ranged.

 Towards Virtual Epidemiology 31

Humans
Humans may play the role of mechanical vector in local propagations. However, their
impact is considered as very low when compared to poultry flocks. Consequently, we
neglect them in this first model. (Para-) veterinarians are a different case, as they
travel among numerous farms and are not always fully trained they may impact the
disease dynamic, thus they will be represented explicitly, going farms to farms.

Animals
Wild birds, which are considered by most epidemiologic surveys as not playing a
noteworthy role in local propagation, are not to be considered. Peridomestic birds,
farm animals, pets and fighting cocks are also removed from this model, as the data
available on them regarding their role in avian influenza is not clear though surveys
are being conducted and their integration is planned.

4.2.1 Outside the Traditional Village
Villages are also linked to poultry production networks, which have a much wider
scale dynamic and a possible strong impact because they connect all the farms and
may constitute a good propagation system.

Mainly, we can consider ([3] and expert knowledge) four actors of this production
chain: traders (highly variable in term of size), transporters, slaughterhouses and sell-
ing points. Traders can stock, trade among themselves and manage their transporters,
who carry living or slaughtered poultry from one chain production node to another.

Slaughterhouses “just” process the poultry and thus have no relevant dynamic. The
only point of sale of processed poultry (i.e. supermarket) can be neglected as it is
considered as a disease end point (no infection possible). On the contrary, local, dis-
trict or provincial markets need to be represented in the same way as the commune.

We have a fairly complex system with both a detailed environment and numerous
actors to represent—but, at this point, the general structure has been defined. The
environment is split into three main categories: a static inner village, the agricultural
surroundings (which is dynamic) and the far surrounding areas (considered static and
homogeneous). Actors are village-related and connecting villages are related.

As all needed data are not yet available, the creation process of the model will be
incremental. We are conscious that we must remain prepared to integrate any entities
that may be declared relevant from surveys being conducted presently.

4.3 Implementation

To implement this model we use a versatile ABM simulation platform, GAMA [18].
The specific feature of this platform is that it allows modelers to work with an artifi-
cial data environment (a grid, for instance) in the same way as field data environments
(i.e GIS) and provide for the seamless integration of both if needed.

4.3.1 The Environment
Similarly to [15] we use a mix of grids, unavailable data and within-simulation gener-
ated data, and GIS objects representing field data information. Both contain the envi-
ronmental data as described in the previous section. These parameters are used to
define the endogenous dynamic of the environment, and the virus’ evolution in

32 E. Amouroux, S. Desvaux, and A. Drogoul

particular. This allows epidemiologists to work on real data (GIS) and incomplete
data but also to infer unavailable data and test the plausibility of such data.

4.3.2 Agents
Classically, we use reactive agents but they are situated in a complex environment
(GIS & grids) and they have also persistent action (for example the daily behavior of
a poultry flock). The modeling of poultry is of particular interest. A flock is homoge-
neous in term of structure and behaviors thus it can represented with one agent repre-
senting the group. Although, they differ in regards to virologic history, as they are not
infected all at the same time and respond differently to the disease. Consequently,
we added a matrix of individuals in each flock as an agent, in the manner of micro
simulation.

5 Conclusion

In this paper we have presented a brief review of epidemiologic questions and the
models adept at responding to those questions. We moved away from the field of
mathematics, while addressing global-scale questions, using computer-based models
and especially IBM which are better suited for a small-scale problematic. Afterwards,
we presented a model to study small-scale epidemiological phenomenon in the con-
text of avian influenza in North Vietnam: local propagation and re-emergence mecha-
nisms. This model differs from those previously proposed, as it treats the environment
as a first-class citizen of the system. Here the environment is not only a topological
surface, it can contain heterogeneous data, have its own dynamic and can be multiple
(GIS + grid in our application). In future works, validation is our most important
concern. Although this model is explanatory and exploratory rather than predictive in
nature, we consider validating the predictive capabilities of the model paramount to
our future work.

References

1. Gilbert, M., Xiao, X., Pfeiffer, D.U., Epprecht, M., Boles, et al.: Mapping H5N1 highly
pathogenic avian influenza risk in Southeast Asia. Proc. Natl. Acad. Sci. USA. 105, 4769–
4774

2. Dung Nguyen, T., Vinh Nguyen, T., Vijaykrishna, D., Webster, R.G., Guan, Y., Peiris,
J.S.M., Smith, G.J.D.: Multiple sublineages of influenza A virus (H5N1), Vietnam, 2005
2007, Emerging Infectious Diseases, 14, 4 (2008)

3. Agrifood consulting international: The Impact of Avian Influenza on Poultry Sector Re-
structuring and its Socio-economic Effects (2006)

4. Chen, H., Li, Y., Li, Z., Shi, J., Shinya, K., Deng, G., et al.: Properties and dissemination
of H5N1 Viruses isolated during an influenza outbreak in migratory waterfowl in Western
China. J. of Viro. 80, 5976–5983 (2006)

5. Ito, T., Okazaki, K., Kawaoka, Y., Takada, A., Webster, R.G., Kida, H.: Perpetuation of
influenza A viruses in Alaskan waterfowl reservoirs. Arch. of Viro. 140(7), 1163–1172
(1995)

 Towards Virtual Epidemiology 33

6. McKendrick, A.G.: Applications of mathematics to medical problems. Proc. of the Edin-
burgh Mathematical Society 44, 1–34 (1925)

7. Abbas, K., Mikler, A., Ramezani, A., Meneze, S.: Computational epidemiology: Bayesian
disease surveillance. In: Proc. of ICBAm 2004 proceedings (2004)

8. Durand, B., Mahul, O.: An extended state-transition model for foot-and-mouth disease
epidemics in France. Preventive Veterinary Medicine 47, 1–2 (2000)

9. Artzrouni, M., Gouteux, J.P., et al.: Population dynamics of sleeping sickness: A micro
simulation. Simulation & Gaming 32(2), 215–227 (2001)

10. Brouwers, L.: MicroPox: a Large-scale and Spatially Explicit Microsimulation Model for
Smallpox Transmission. In: Proc. of the Intl. Conf. of Health Sciences Simulation (2005)

11. Turner, J., Begon, M., Bowers, R.: Modelling pathogen transmission: the interrelationship
between local and global approaches. Proc. Biol. Sci. 270(1510), 105–112 (2003)

12. Ghani, A.: Models for an Outbreak of Avian Influenza in the UK Poultry Flock, Journées
de modélisation en épidémiologie animale du CIRAD (2007)

13. Wilensky, U.: NetLogo Virus model (1998), http://ccl.northwestern.edu/
netlogo/models/Virus

14. Muller, G., Grébaut, P., Gouteux, J.P.: An agent-based model of sleeping sickness: simula-
tion trials of a forest focus in southern Cameroon, Éd. Sc. et Méd. Elsevier, Amsterdam
(2004)

15. Badariotti, D., Banos, A., Laperrière, V.: Vers une approche individu-centrée pour modé-
liser et simuler l’expression spatiale d’une maladie transmissible: la peste à Madagascar,
cybergeo (2007), http://www.cybergeo.eu/index9052.html

16. Bénédicte, S.J.: Atlas Bac Hung Hai, Gret (personnal communication) (1999)
17. Desvaux, S., Vu, D.-T.: A general review and description of the poultry production in

Vietnam. Agricultural publishing house (2008)
18. Amouroux, E., Chu, T.Q., Boucher, A., Drogoul, A.: GAMA: an environment for imple-

menting and running spatially explicit multi-agent simulations. LNCS (LNAI). Springer,
Heidelberg (2007)

Measurement of Underlying Cooperation in
Multiagent Reinforcement Learning

Sachiyo Arai, Yoshihisa Ishigaki, and Hironori Hirata

Graduate School of Engineering, Chiba University,
1-33 Yayoi-cho, Inage-ku,

Chiba Japan
arai@tu.chiba-u.ac.jp

http://nexus-lab.tu.chiba-u.ac.jp/sarai/

Abstract. Although a large number of algorithms have been proposed
for generating cooperative behaviors, the question of how to evaluate mu-
tual benefit among them is still open. This study provides a measure for
cooperation degree among the reinforcement learning agents. By means
of our proposed measure, that is based on information theory, the de-
gree of interaction among agents can be evaluated from the viewpoint
of information sharing. Here, we show the availability of this measure
through some experiments on “pursuit game”, and evaluate the degree
of cooperation among hunters and prey.

1 Introduction

In general, interaction among agents is classified as either conflict or cooperation
by examining of multiagent’s observable behaviors. Whether conflict or cooper-
ation has been decided by the utility of each agent’s viewpoint, such as a payoff
matrix in the game theoretic approach. However, since achieving a goal usually
requires a sequence of actions, it is hard to evaluate the utility of each action
per time step, separately. Consequently, to see whether there is cooperation or
not, we have usually evaluated the number of steps to achieving a goal as the
efficiency of their performance. Because if the task needs cooperation, it will
be achieved faster with the cooperation than the case without it. Otherwise we
have no alternative but to observe and evaluate emerged behaviors of the agents’
qualitatively.

Thus there is no quantitative expression of what is going on among the agents
in each time step, and then we just have to observe their behaviors carefully.
From an engineering viewpoint, clarifying the process of learning with a quanti-
tative measure is important to improve cooperative task of agents’.

In the following section, we describe our problem domain and related study
on the “pursuit game”. The measure of interaction is defined and applied to
the problem in section 3. In section 4, we show some experimental results, and
discuss validity of our measure to see their interaction during the learning period.
Finally in section 5, we conclude our research here and describe the future work.

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 34–41, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://nexus-lab.tu.chiba-u.ac.jp/sarai/

Measurement of Underlying Cooperation 35

2 What’s a Cooperative Behavior?

2.1 Problem Domain

In this paper, we consider the “pursuit game” which has been often studied
by many multiagent researchers [2]. Reinforcement learning approach to the
“pursuit game” has been taken by Tan [5] where Q-learning is applied to make
each hunter behave appropriately, and they evaluate several configuration of
information sharing patterns. In these works, the amount of communication has
been evaluated in terms of the efficiency of agents’ performance, such as number
of steps to reach the goal, that would not reflect a certain interaction among the
agents. It still remains whether the effectiveness of information sharing to the
each agent’s viewpoint.

Related Works: There exist some researches to evaluate global behavior of
agents’ by applying Shannon’s measure, information entropy. Balch [1] intro-
duced the concept of team diversity to evaluate robot societal diversity that is
determining whether agents are alike or unlike. Also Parunak and Brueckner [7]
are based on information theory to analyze the process of reinforcement learning
agent. Although these researches introduced Shannon’s Theorems to evaluate
behaviors after learning, they did not focus on the uncertainty of each agent
during the learning process where it will be found some interesting properties of
interaction among the agents.

2.2 Definition of Measure

The good cooperation will make up for information uncertainty of each agent
around its environment, and boost efficiency of their task achievement. To quan-
tify the cooperation, we introduce Shannon’s information theory that focuses on
uncertainty in a communication system, that includes several agents, exactly the
same as the multiagent system.

Agent Model: An agent is modeled as a reinforcement learning entity engaged in
an episodic task in an unknown environment. Suppose an environment is defined
by a finite set of state, S = {s1, · · · , sh, · · · , so}, each agent has a finite set of
available actions, A = {a1, · · · , ai, · · · , an}, a policy of each agent is described in
terms of π(S,A) as shown in Eq.(1) . If a single action is strongly reinforced and
it is only effective one in the state, we call this state has a deterministic policy,
and entropy of this state becomes 0 under our definition. Then, H(π(sh,A)),
the entropy of its policy π(sh, ai) can be defined by Eq.(2) .

n∑
i=1

π(sh, ai) = 1 (1)

H(π(sh,A)) = −
n∑

i=1

π(sh, ai) log π(sh, ai) (2)

36 S. Arai, Y. Ishigaki, and H. Hirata

Here, we should consider that an agent does not visit each state of the envi-
ronment equally. Thus, we take weighted average of H(π(sh,A)) by using the
occurrence probability of each state P (sh). We introduce occurrence probabili-
ties of each state as shown in Eq.(3) and Eq.(4), and define weighted average of
H(π(sh,A)) as shown in Eq.(5). In the following sections, we abbreviate Hnormal
to H .

S =
{

s1 , · · · , sh , · · · , so

P (s1), · · · , P (sh), · · · , P (so)

}
(3)

0 ≤ P (sh) ≤ 1(h = 1, · · · , o),
o∑

h=1

P (sh) = 1 (4)

Hnormal(π(S,A)) =
o∑

h=1

P (sh)H(π(sh,A))

= −
n∑

i=1

o∑
h=1

P (sh)π(sh, ai) log π(sh, ai) (5)

2.3 Mutual Information Measure of Two Agents

Suppose that the environment includes two learning agents A and B. The agents
take turns at sensing its environment and taking its action, like ABAB· · ·. The
action set of A and policy of A are represented by AA = {a1, · · · , ai, · · · , an},
and πA(S,AA), respectively. Similarly, we describe action set of B and policy of
B are represented by AB = {b1, · · · , bj , · · · , bm}, and πB(S,AB), respectively.

Under the situation, where more than two agents learn concurrently, the des-
tination state alters during learning process. Because there are multiple agents
who learn and decide action independently, the state transition probabilities
fluctuate.

As shown in Eq(6) and (7), we define the action selection probability of A’s
when A senses s ∈ S. After A sensing state s, A acts ai, then destination state
from s is represented by sai . Subsequently, after A’s action, B senses sai ∈ S,
and action selection probability of B′s is described Bai as shown in Eq.(8) and
Eq.(9).

In the case where B has no information about A’s action, B’s action selection
probability can be defined as Eq.(10) ∼Eq.(11).

A =
�

a1 , · · · , ai , · · · , an

πA(s, a1), · · · , πA(s, ai), · · · , πA(s, an)

�
=
�

a1 , · · · , ai , · · · , an

P (a1), · · · , P (ai), · · · , P (an)

�
(6)

0 ≤ P (ai) ≤ 1,
n�

i=1

P (ai) = 1 (7)

Bai =

{
b1, , ··, , bj , , ·· , bm

πB(sai , b1), ··, πB(sai , bj), ··, πB(sai , bm)

}
=

{
b1 , ··, bj , ··, bm

P ai(b1), ··, P ai(bj), ··, P ai(bm)

}

(8)

Measurement of Underlying Cooperation 37

0 ≤ P ai(bj) ≤ 1,

m�
j=1

P ai(bj) = 1 (9)

BA =
�

b1 , · · · , bj , · · · , bm

P A(b1), · · · , P A(bj), · · · , P A(bm)

�
, (10)

P A(bj) =
n�

i=1

P (ai)P ai(bj), 0 ≤ P A(bj) ≤ 1(j = 1, · · · , m),
m�

j=1

P A(bj) = 1 (11)

In the following sections, we derive mutual information of A which is defined
as Eq.(6) and Eq.(7), and BA which is defined as Eq.(10) ∼Eq.(11). Firstly, we
derive a conditional probability and a joint probability of a set of probability
event A and BA as shown in Eq.(12) and Eq.(12).

Secondly, a difference between self-information and conditional information
can be derived from − logPA(bj)−{− logP (bj | ai)} = log P (bj |ai)

P A(bj)
. Then, it is

multiplied by the joint probability, P (bj , ai), to take the average of each action
of A and BA, as shown in Eq.(13) .

Third, a mutual information Is(A; BA) is derived from assigning Eq.(11) (12)
to Eq.(13) . Then, we take weighted average of Is(A; BA) by applying Eq.(3) ,
and finally get the definition of a normalized mutual information Inormal(A; BA),
as shown in Eq.(16). In the following sections, we abbreviate Inormal(A; BA) to
I(A; BA).

P (bj | ai) = P ai(bj), P (bj , ai) = P (ai)P (bj | ai) = P (ai)P ai(bj) (12)

Is(A; BA) =
n∑

i=1

m∑
j=1

P (ai, bj) log
P (bj | ai)
PA(bj)

(13)

=
n∑

i=1

m∑
j=1

P (ai)P ai(bj) log
P ai(bj)∑n

i=1 P (ai)P ai(bj)
(14)

=
n∑

i=1

m∑
j=1

πA(s, ai)πB(sai , bj) · log
πB(sai , bj)∑n

i=1 πA(s, ai)πB(sai , bj)
(15)

Inormal(A; BA) =
o∑

h=1

P (sh)Is(A; BA) (16)

The above definition of mutual information can be extended to the case of mul-
tiple agents without differentially.

3 Experiments

3.1 Experimental Setting

We consider an n× n toroidal grid world. A prey, P and two hunters, A and B
are initially placed randomly. When prey is blocked by two hunters in a pincer

38 S. Arai, Y. Ishigaki, and H. Hirata

A BP

(a) Goal State of Pursuit Game

P

A

B

(b) Example of Hunters’ Sight (The case of
mB = 5, mA = 3)

Fig. 1. Experimental Setting of Pursuit problem

movement, as shown in Figure1(a) , before its action, the prey can not move
anywhere and then hunters achieved their goal.

Both hunters and prey each successively take turns in moving. Here, it is
assumed that there is no communication between agents and they independently
sense and act by turns i.e., ABPABP · · ·. The hunters and prey select the action
from the set of {Stay, North, East, South, West} but it can not occupy the same
position.

Both hunters have a n×n sight as to the prey, that is prey always comes into
hunter’s sight. As to the other hunter’s location, we describe hunter A’s sight
for hunter B as mA×mA(mA ≤ n), and similarly hunter B’s sight for hunter A
as mB ×mB(mB ≤ n). The value of mA and mB is changed depending on the
purpose of the experiments. In their sight, they can distinguish one from others.
Figure1 (b) shows the example of hunter’s sight.

APrey also has an×n sight andwhena hunter is next to it, it escapes to the other
side of the hunter. And if more than two hunters are next to it at the same time,
it escapes from the hunter this has the first priority. The order of hunters’ priority
is Southern � Western � Eastern � Northern hunter of the prey. Our setting
for the prey’s movement is different from the usual setting of “pursuit game” [2][3]
where the prey moves randomly anytime. But our setting aims at making it easier
to observe and evaluate the degree of emerged cooperation of hunters.

3.2 Learning Algorithm

We use Q-learning [6] that has been often used. It is fact that our proposed
measure will be available in the case where agents learn by other reinforcement
learning algorithms. To calculate it, the occurrence probability of each state
should be given or estimated. The parameters of Q-learning are set to the learning
rateα = 0.05 and the discounting factorγ = 0.9. When the hunter is in the
goal state, it receives a reward 1.0. The Q-learning hunter selects its action
according to the Boltzmann distribution, p(ai|x) = eQ(x,ai)/T

�
k∈actions eQ(x,ai)/T , where

we set T = 0.5 ·0.998episode+0.01. Here, episode means the number of steps from
the initial state to the goal state. These parameters are chosen by preliminary
experiments.

In our experiments, the environment size is n = 5, and the sight size of mA

and mB will be set from {1,3,5}. In the case of mi = 1, there has no sensory

Measurement of Underlying Cooperation 39

input of environment, in the case of mi = 3, there happens to be a perceptual
aliasing, and in the case of m5, an agent can see a whole environment except
inside of other agents.

3.3 Experimental Result

We introduce two cases of the experimental results. Both Figure 2(a) and 3(a)
show the learning curves where x-axis and y-axis show the number of episodes
and the steps of achieving the goal. And (b)-(d) of Figure 2 and 3 show the
changing entropy of Prey’s, the mutual information I(A; BA), and I(B; ABP),
respectively. As well, another graph in (a) of Figure 2 and 3 is the magnified one
to show their change clearly.

4 Discussion

Agents’ Entropy: Figure 2(b) shows that prey’s entropy decreases as hunters’
learning progressed, though the prey does not learn anything. Since the prey
moves depending on the hunters’ movement, both hunters make prey not to
move randomly for capturing the prey easily. Therefore, the more deterministic
the hunters’ policies become, the less randomly the prey moves. In other cir-
cumstances of the case mA = 1, 3, where the sight size of hunter A becomes

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
he

 N
um

be
r

of
 S

te
p

The Number of Episode

 3.5

 4

 4.5

 5

 5.5

 0 1000 2000 3000 4000 5000

mA = 5, mB = 1
mA = 5, mB = 3
mA = 5, mB = 5

(a) The number of steps for achieving the
goal

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
nt

ro
py

 (
bi

t)

The Number of Episode

mA = 5, mB = 1
mA = 5, mB = 3
mA = 5, mB = 5

(b) Entropy of Prey H(P)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ut

ua
l I

nf
or

m
at

io
n

(b
it)

The Number of Episode

mA = 5, mB = 1
mA = 5, mB = 3
mA = 5, mB = 5

(c) Mutual Information I(A;BA)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ut

ua
l I

nf
or

m
at

io
n

(b
it)

The Number of Episode

mA = 5, mB = 1
mA = 5, mB = 3
mA = 5, mB = 5

(d)Mutual Information I(B; ABP)

Fig. 2. Result of Case :mA = 5, mB = 1, 3, 5

40 S. Arai, Y. Ishigaki, and H. Hirata

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
he

 N
um

be
r

of
 S

te
p

The Number of Episode

mA = 1, mB = 5
mA = 3, mB = 5
mA = 5, mB = 5

 3.5

 4

 4.5

 5

 5.5

 0 1000 2000 3000 4000 5000

(a) The number of step for solving the task

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
nt

ro
py

 (
bi

t)

The Number of Episode

mA = 1, mB = 5
mA = 3, mB = 5
mA = 5, mB = 5

(b) Entropy of P H(P)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ut

ua
l I

nf
or

m
at

io
n

(b
it)

The Number of Episode

mA = 1, mB = 5
mA = 3, mB = 5
mA = 5, mB = 5

(c) Mutual Information I(A;BA)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ut

ua
l I

nf
or

m
at

io
n

(b
it)

The Number of Episode

mA = 1, mB = 5
mA = 3, mB = 5
mA = 5, mB = 5

(d) Mutual Information I(B;ABP)
(mA = 1, 3, 5, mB = 5)

Fig. 3. Result of Case :mA = 1, 3, 5, mB = 5

incomplete, the entropy of prey’s does not decrease and it keeps move moving
randomly. Keeping prey’s movement random seems effective in this case, because
it increases the opportunity to meet the prey.

Mutual Information: Figure 2(c) shows that the value of mutual information
I(A; BA) keeps 0 in the case of mB = 1, where hunter B does not see anything
around him. This comes about as a natural result, since hunter B has no option
but to act independently from hunter A. On the other hand, we found from
Figure 3(d), the mutual information I(B; ABP) of case mA = 1, in which hunter
A does not have any sight, maintains larger value than that of others. This
is due to the order of agents’ action, i.e., ABCABC· · ·. Since hunter B has a
wide view of the environment, it can play effective movement to close the prey.
Then the prey tries to escape from hunter B. These interactive actions are very
informative for hunter A to move effectively.

Finally, to show the availability of our proposed measure of cooperation, we
focused on the mutual information I(A; BA) of mA = 1 in the Figure 3(c). Here,
we found that I(A; BA) of mA = 1 keeps larger value than the case of mA = 3
and mA = 5. These results indicate that hunter B takes lead role to achieve the
goal when hunter A has a smaller sight than hunter B’s. And vice versa, hunter
A takes over the lead, when the site size of hunter B’s is smaller than that of
A’s, as shown in Figure 2(d). Figure 3(c) indicates another significant aspect of
the contribution of our proposed measure. Comparing the value of I in the case

Measurement of Underlying Cooperation 41

of mA = 3 and mA = 5, there is little difference among them. The result of little
difference of I provides quantitative information whether the current sight size
is adequate or not.@This information is important for modeling agents in the
multiagent environment.

5 Conclusion

We introduce information theoretic measure for analyzing emerged behaviors by
means of reinforcement learning within the multiple agent environment. Gener-
ally, interaction among agents has been discussed qualitatively, that is, there is
no option to evaluate whether cooperative behaviors are generated or not, except
observational analysis. Whereas observational evaluation should be necessary, it
seems not enough to know what is going on in their halfway of learning, or in
the process of adaptation to their environment. For this issue, entropy and mu-
tual information that we defined can bring out the interaction among the agents
during learning period.

In this paper, we show the availability of our proposed measure through some
experimental results on “pursuit game” of which task requires cooperative be-
havior by nature. We also have found out that our measure gives useful direction
even environment where there exist the goal conflicts among the agents. These
results will be introduced in another paper.

References

1. Balch, T.: Hierarchic Social Entropy: An Information Theoretic Measure of Robot
Group Diversity. Autonomous Robotics 8(3), 209–238 (2000)

2. Gasser, L., Rouquette, N., Hill, R.W., Lieb, J.: Representing and Using Organiza-
tional Knowledge in Distributed AI Systems. In: Gasser, L., Huhns, M.H. (eds.)
Distributed Artificial Intelligence, vol. 2, pp. 55–78. Morgan Kaufmann, San Fran-
cisco (1989)

3. Levy, R., Rosenschein, J.S.: A Game Theoretic Approach to Distributed Artificial
Intelligence and The Pursuit Problem. In: Proceedings of the 3rd European Work-
shop on Modeling Autonomous Agents in a Multi-Agent World, pp. 129–146 (1992)

4. Shannon, C.E.: The Mathematical Theory of Communication. University of Illinois
Press (1949)

5. Tan, M.: Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents.
In: Proceedings of the 10th International Conference on Machine Learning, pp. 330–
337 (1993)

6. Watkins, C.J.H., Dayan, P.: Technical note: Q-learning. Machine Learning 8, 55–68
(1992)

7. Parunak, H.V.D., Brueckner, S.: Entropy and Self-Organization in Multi-Agent Sys-
tems”. In: Proceedings of fifth International Conference on Autonomous Agents, pp.
124–130 (2001)

Reo Connectors as Coordination Artifacts in
2APL Systems

Farhad Arbab1,2, Lăcrămioara Aştefănoaei2, Frank S. de Boer1,2,
Mehdi Dastani3, John-Jules Meyer3, and Nick Tinnermeier3

1 Universiteit Leiden, The Netherlands
2 CWI, Amsterdam, The Netherlands

3 Universiteit Utrecht, The Netherlands

Abstract. Communication is an important topic in multi-agent sys-
tems. Reo is a channel-based exogenous coordination model which can
be used not only for the communication, but also for the coordination
of individual agents. 2APL is an agent-oriented programming language
where at the multi-agent level one can specify for individual agents which
external environments they have access to. In this paper, we understand
Reo networks as specific environments for 2APL agents and we focus
on the integration of Reo networks into the 2APL platform. We show
how Reo networks can be used to coordinate the behaviour of individual
agents by means of an auction example.

1 Introduction

An important issue in agent software development is communication and co-
ordination. In this paper, we focus on the integration of a channel-based com-
munication mechanism into an agent platform. Channel-based communication
enjoys many of the benefits of other communication models (messaging, shared
spaces, events). It allows efficient implementations of point-to-point models, it
supports private communication, it is architecturally expressive and it is anony-
mous. There are several kinds of channel-based communication models, MoCha
[8], Nomadic Pict [10], Reo [1, 3] to name a few. The middleware MoCha, for
example, has the advantage of being a real infrastructure for distributed imple-
mentations. However, we choose the Reo language since we can use channels
not only for communication, but also for building complex connectors by com-
posing channels. Such connectors impose specific coordination patterns on the
execution of individual agents.

We approach the problem of communication (coordination) in multi-agent
systems by fixing 2APL [5] as the language for implementing agents, Reo as the
language for implementing coordination artifacts in the 2APL framework, and
by focusing on their integration. The 2APL framework consists of agents and
environments to which the agents have access. We understand nodes in a Reo
network as a particular environment through which the agents can communi-
cate. Furthermore by connecting channels in a particular way, we obtain specific

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 42–53, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reo Connectors as Coordination Artifacts in 2APL Systems 43

infrastructures on top of the nodes, which can be used as a coordination mech-
anism which, for example, restricts the execution of the agents. One important
feature of the Reo language lies in the concept of “exogenous coordination”. In
this way, we obtain a clear separation between execution (of agent programs)
and control (of executions). Finally, we note that there exists a wreath of tools,
“The Eclipse Coordination Tools”1, which provide facilities for designing and
verifying Reo networks.

The idea of using Reo as a coordination language for agents is not new, it
appears first in [6]. However, what we offer is an executable 2APL platform
where it is possible to integrate Reo connectors as the underlying communication
infrastructure and as coordination artifacts in 2APL systems. We illustrate the
use of the presented integration by means of an auction scenario. Finally, we
show that the presented integration provides tools that enable the verification
of interaction and communication properties.

In this paper, we briefly present the 2APL platform in Section 2 and the Reo
coordination language in Section 3. Section 4 describes the mechanism underly-
ing the integration of 2APL and Reo, with a basic application as a case of study.
Section 4.2 gives an insight on the application of model-checking and Section 5
concludes the paper.

2 2APL

2APL (A Practical Agent Programming Language) is an agent-oriented pro-
gramming language that provides two distinguished sets of programming con-
structs to implement both multi-agent as well as individual agent concepts. At
the multi-agent level one can specify which agents should be created and which
external environments they have access to. At the individual agent level, one can
specify each (to be created) agent in terms of declarative concepts such as beliefs
and goals, and imperative concepts such as events and plans. 2APL multi-agent
systems run on the 2APL platform2, a development tool that is designed to sup-
port the implementation and execution of multi-agent systems programmed in
2APL. In this section we briefly describe those parts of the syntax and intuitive
semantics of 2APL that are relevant to this paper. For a complete overview of
the syntax and formal semantics of the 2APL programming language we refer
to [5].

The specification at the multi-agent level indicates which type of agents and
how many of them constitute a multi-agent system. Moreover, it indicates which
external environments are involved in the multi-agent system and which agent
can interact with which external environment. The syntax for multi-agent level
specification is as follows:

agentname1 : filename1 N1 @env1
1,...,env

n
1

. . .
agentnamep : filenamep Np @env1

p,...,env
m
p

1 The Eclipse Coordination Tools are at http://homepages.cwi.nl/ koehler/ect/
2 The 2APL Platform can be downloaded at http://cs.uu.nl/2apl

44 F. Arbab et al.

Here agentnamei is the name of the agent to be created, filenamei is the file
name in which the agent is specified, Ni is the number of such agents to be
created (if Ni > 1, then the agent names will be indexed by a number), and
@envj

i is the name of the environment that the agents can access and interact
with. Each environment envj

i is specified by a Java class of which one instance
is created by the 2APL platform when loading the multi-agent specification. We
explain later in this section how such a Java class implements an environment.
Next, we will describe the relevant concepts by which a 2APL agent is specified.

A 2APL agent has beliefs and goals. The beliefs of an agent represent the
information the agent has (about itself and its environments). The goals of an
agent specify the situation the agent wants to realize. The agent’s beliefs are
stored in its belief base, which is implemented as a Prolog program. The agent’s
goals are stored in its goal base as conjunctions of ground atoms. A 2APL agent
has only goals it does not believe to have achieved. Consider, for example, the
belief and goal base of an auction agent with the goal of having a bike.

Beliefs:
bid(100). step(30). maximalBid(400).

Goals:
have(bike)

In this example, the agent believes its current bid to be EUR 100 (at the first
round this is its initial bid), and will increase its bid each round with EUR 30 to
a maximum of EUR 400. As soon as the agent believes to have bought the bike
(i.e., have(bike) can be derived from the agent’s beliefs) this goal is removed
from the goal base.

To achieve its goals an agent needs to act. Actions that a 2APL agent can
perform include actions to update its beliefs, actions to query its belief and goal
base and external actions to interact with its environment.

The belief base of the agent can be updated by the execution of a belief update
action. Such belief updates are specified in terms of pre- and post-conditions.
Intuitively, an agent can execute a belief update action if the pre-condition of
the action is derivable from its belief base. After the execution of the action,
the beliefs of the agent are updated such that the post-condition of the action
is derivable from the agent’s belief base. The belief update UpdateBid(R) for
updating the current bid bid(X) to bid(R), for example, is specified as:

{bid(X)} UpdateBid(R) {not bid(X), bid(R)}

A test action can be used to test whether the agent has certain beliefs and/or
goals. A test action is a conjunction of belief and goal tests. Belief test actions
are of the form B(φ) in which φ is a (Prolog) query to the belief base. Similarly,
goal test actions are of the form G(φ) in which φ is a query to the goal base. A
goal test action G(φ) is successful if φ is derivable from the agent’s goal base. A
(belief or goal) test action can result in a substitution for variables that occur
in φ. For example, given the above belief base, the belief test action B(bid(X))
is successful resulting in the substitution X/100. A test action can be used in a
plan to (1) instantiate variables in the subsequent actions of the plan (if the test

Reo Connectors as Coordination Artifacts in 2APL Systems 45

can be entailed by the agent’s beliefs and goals), or (2) to block the execution
of the plan (in case the test cannot be entailed by the agent’s beliefs and goals).

A 2APL agent performs external actions to act upon its environment. In 2APL
environments are implemented as Java classes of type Environment. External
actions that can be performed in this environment are then to be implemented
as methods of this class having a predefined signature:

Term actionName(Term t1,...,Term tn)

in which Term is the Java equivalent of 2APL terms such as constants (numbers
and idents) or variables. External actions in the 2APL programming language
are then of the form:

@env(actionName(t1,...,tn),R)

with actionName(t1,...,tn) corresponding to the signature of the Java method
implementing the action, R is the return value that can be used to capture (a
part of) the result of the action, and env being the unique identifier of the
Environment object that implements the environment. The performance of an
external action then boils down to invoking the method specifying the external
action and binding the return value of this method to R.

A 2APL agent adopts plans to achieve its goals. These plans are the recipes
that describe which actions the agent should perform to reach the desired situa-
tion. In particular, plans are built of basic actions and can be composed (amongst
others) by a sequence operator (i.e., ;) and a conditional choice operator. Condi-
tional choice operators are of the form if ϕ then π1 else π2. The conditional
part of these expressions (ϕ) is a conjunction of belief tests B(φ) and goal tests
G(φ) that are evaluated on the agent’s beliefs and goals. Such a condition thus
expresses that the agent should perform plan π1 in case ϕ can be entailed by the
agent’s beliefs and goals and otherwise plan π2. Note that the conditional part
of such an expression may result a substitution that binds some variables in the
π1 part of the expression.

An agent possibly has more than one plan to reach its goals. Which plans are
the best usually depends on the current situation. Planning goal rules are used
to generate plans based on the agent’s goals and beliefs. Such a rule is typically
of the form head <- guard | body. The head of the rule is a goal expression
indicating whether the agent has a certain goal. The guard of the rule is a belief
expression indicating whether the agent has a certain belief, and the body of
the rule is the plan that can be used to achieve the goal as stated by the head.
A planning goal rule can be applied if the head and guard of the rule can be
entailed by the agent’s beliefs and goals, respectively. As an example, consider
the following planning goal rule of our auction agent:

have(X) <- not finished | { ... }

indicating that the plan between the brackets can be used to achieve the goal of
having product X in case the agent believes the auction is not finished.

46 F. Arbab et al.

3 The Reo Coordination Language

This section provides a short presentation of Reo (further details can be found in
[1, 3]). Reo is a channel-based exogenous coordination language wherein complex
coordinators, called connectors, are built out of simpler ones. Reo can be under-
stood as a “glue language” for compositional construction of connectors which
represent coordination artifacts in component-based systems. The emphasis in
Reo is on connectors and their composition, not on the components, which are
seen as “black-boxes”. The connectors impose a specific behaviour on the com-
ponents, without the knowledge of the internal structure of the components.

The mechanism for constructing connectors is channel composition. Channels
are primitive connectors, with two ends which can be either source or sink. At a
source end data enters the channel by performing a corresponding write opera-
tion, while at a sink end data leaves the channel by performing a corresponding
read operation. Reo imposes no restriction on the behaviour of the channels and
thus it allows an open-ended set of channel types with user-defined semantics.
Figure 1 depicts the graphical representation of three basic channel types: ab is a
synchronous channel (Sync), cd is a one buffer cell asynchronous FIFO channel
(FIFO1), and ef is a synchronous drain channel (SyncDrain). Synchronous and
FIFO channels have both a source and a sink end each. In a Sync channel data
is simultaneously accepted at the source end and dispensed at the sink end. In
a FIFO1 channel data is accepted at the source only if the buffer is empty and
data is despensed at the sink end only if the buffer is full. SyncDrain channels
have two source ends and no sink. In a SyncDrain channel data is simultaneously
accepted at the source ends and then destroyed.

Channels are composed via a join operation in a node which consists of a
set of channel ends. Such a node is either source, sink, or mixed depending on
whether all channel ends which coincide on the node are only source, only sink
or a combination of source and sink. Source and sink nodes represent input
and output ports where components connect to the network. A component can
write data to a source node (input port) only if all source ends coincident on
the node accept the data, in which case the data is written on each source end.
Source nodes, thus, replicate data. A component can obtain data from a sink
node (output port) only if at least one of the sink nodes coincident on the node
offers data. In the case of more offers one is chosen nondeterministically. Sink
nodes, thus, nondeterministically merge data. We take as an example the Reo
diagram shown in Figure 2. This diagram represents a Reo connector which we
use later in the paper. It implements a barrier synchronisation: by definition,
the SyncDrain channel ef ensures that a data item passes from ab to cd only
simultaneously with the passing of a data from gh to ij (and vice-versa).

Fig. 1. Basic Channel Types in Reo

Reo Connectors as Coordination Artifacts in 2APL Systems 47

Fig. 2. A Barrier Synchroniser Connector

Fig. 3. Implementing a Component-Based System with a Barrier Synchroniser

3.1 Reo in Practice

In this section we briefly describe the process of building up a custom Java
application which implements a component-based system coordinated by a Reo
connector. The design mechanism relies on a bundle of plugins for the Eclipse
development environment called “The Eclipse Coordination Tools”.

We take as an illustration a system with two components which simply alter-
nate write and read operations. We assume that the behaviour of one component
is to first write to the source node a and then read from the sink node g, and the
same for the other one (a write to g is followed by a read from j). We further
assume that the writings are controlled by a barrier synchroniser, and in this
way, we have a simple mechanism of coordinating the components. Basically,
the programmer starts by drawing the Reo connector from Figure 2 using the
Reo editor. This diagram is automatically converted to the Java code which we
denote as Barrier in Figure 3. Given that the components are implemented as
Java threads (Comp1 and Comp2 in Figure 3), the programmer simply needs to
drag and drop their corresponding code and the code for the barrier synchroniser
into the Casp editor, which is meant to facilitate the programmer to wire the
components to the coordinator. After the linking is completed, the system auto-
matically generates code that implements the whole application (i.e., it generates
a Java class where the constructors for Comp1, Comp2, Barrier are properly in-
stantiated and the corresponding threads are started). Note that connectors can
be exported as Reo libraries which can be later on reused. A growing collection
of commonly useful connectors already exists.

48 F. Arbab et al.

4 Integrating Reo Connectors into the 2APL Platform

In this section we describe a mechanism for integrating Reo connectors into
the 2APL platform. For this we consider a particular environment reo. The
execution of any 2APL external action in the environment reo is a read from or
a write to a given sink or source node, respectively. It is the task of the MAS
programmer to setup the links between 2APL action names and Reo nodes. This
should be done in a configuration class, which, in this section, we call ReoCustom.
This class should be understood as an interface between the Reo network and
2APL agents. The MAS programmer should bear in mind that the association
of an action name to a source node is to be interpreted as a write operation
to the node. Similarly, the association of an action name to a sink node is to
be interpreted as a read operation from the node. We take, for instance, the
following setup. We assume that the MAS programmer creates a MAS file with
the specification bidder1 : bidder1.2apl @reo and that the 2APL code for
the agent bidder1.2apl contains the external action call @reo(bid(100),).
This means that there exists a corresponding node in the Reo network. Let this
node be a source node p4. Under these assumptions, if the MAS programmer
wants to implement that @reo(bid(100),) is a write on p4, then he or she
needs to associate the action bid of bidder1 to p4. This association is done in
the ReoCustom configuration class by the following statement:

addSourceNode(‘‘bidder1’’,‘‘bid’’,p4)

where the parameters are the name of the agent, the name of the 2APL action
and a source node. Similarly, the association of an action name with a sink node
is done by calling addSinkNode. These functions are implemented in a specific
environment ReoEnvironment. Besides providing functions which facilitate the
MAS programmer to make the associations between action names and nodes,
ReoEnvironment has a further use as well. Please note that the @reo external
actions have a generic execution mechanism (either a read from or a write to a
given node). It follows that it is desirable that the MAS programmer is spared
the trouble of implementing them (as it is the case with external actions in
general). ReoEnvironment is designed especially to make the implementation of
@reo external actions transparent to the MAS programmer.

We conclude the section with a small remark. So far we have left the “wiring”
up to the MAS programmer. However, we can imagine other options through
which the interface is created automatically. For instance, we could think of
scripting languages, where one could even design mechanisms which support
parametrised MAS files as input. It should also be possible to use the Casp
editor (see Section 3.1) as such an alternative. For this, MAS files should specify
for each agent its interface to the Reo network. For example, the MAS file

bidder1 : bidder1.2apl @reo (bid p4) (readMax p3)

specifies that bidder1 can perform the external actions bid and readMax in the
environment reo. Furthermore, it specifies that the action bid is associated with
the node p4, and readMax with p3. Such an approach has the advantage that a
node could be associated with more than one action.

Reo Connectors as Coordination Artifacts in 2APL Systems 49

4.1 An Auction Scenario

In this section we propose an auction scenario illustrating the use of Reo based
coordination artifacts in a 2APL system. We assume that we have a set of agents
taking part in a sealed-bid auction. Each agent has its own maximal bid and its
own strategy of increasing the bid. All participants submit their initial bid at the
same time, then they wait for a response with the highest bid. If they want to
continue they increase the highest bid with their chosen amount, otherwise they
submit a default value 0. The auction ends when all minus one of the participants
submit 0. The winner is the one with a non-zero bid. Typically, the planning
goal rule of such a bidder is implemented in 2APL as follows:
have(X) <- highestBid(H) and maximalBid(Max) and step(S) and

bid(C) and oldBid(O) and not finished | {
if B(Max > H + S)
then { @reo(bid(H + S), _); UpdateBid(H + S) }
else { @reo(bid(0), _) };
@reo(readMax(nil), NH); UpdateHighestBid(NH);
if B(highestBid(0) and oldBid(Y) and bid(Y))
then Bought(X) else if B(highestBid(0)) then Finish() }

where updateBid(X), updateHighestBid(X), Bought(X), Finish() are the in-
ternal actions of the bidder agent, defined simply as belief updates, and bid(X),
readMax(X) are the only external actions that bidders can perform in the en-
vironment reo. Assume that auction.mas is the MAS file describing two bid-
ders, and assume that the bidding agents are implemented in bidder1.2apl and
bidder2.2apl:
bidder1 : bidder1.2apl @reo
bidder2 : bidder2.2apl @reo

We implement the mechanism of the auction as a Reo connector. Whenever a
bidder submits a bid, a writing to the corresponding node occurs. We ensure
that the bids happen simultaneously by using the barrier synchroniser described
in Section 3, as it can be noticed in Figure 4.

Adding components to a multi agent system has the advantage of making our
approach more powerful, generic and modular. We advocate the use of compo-
nents whenever a standard task, with a clear meaning, needs to be implemented.

Fig. 4. A Reo Connector Implementing an Auction

50 F. Arbab et al.

Fig. 5. ReoAuction: The Interface between the Bidders and the Connector Auction

This is why we choose to implement the auctioneer as a component, Max, which
basically takes the data from its input nodes and forwards the maximum value.
The value computed by Max is broadcast to readMax1 and readMax2, which co-
incide with the sink nodes associated to the action readMax of the bidders, thus
the bidders can read the value of the highest bid and continue the auction.

Given that we generated from the Reo diagram in Figure 4 a Java class
Auction by the mechanism described in Section 3.1, we can now proceed with
filling in the missing information in the interface we referred to as ReoCustom
in Section 4. Since it is application dependent, we name it ReoAuction. This
is the place where we setup the links between the nodes of the coordinator
and the nodes of all other components, in our case, the bidding agents and
Max. This is partially done by generating code from the Casp diagram (see
Figure 5). We further need to setup the associations between the external ac-
tions and the nodes of the bidders. Take, as an illustration, the function call
addSinkNode("bidder1","readMax", p3), where p3 is a synchronisation point
representing, on the one hand, coordinator’s source node readMax1, and on
the other hand, bidder1’s sink node readMax. This establishes that whenever
bidder1 performs a readMax action it reads the data written to readMax1.

We assume that the first bidder has an initial bid of EUR 150, and that he is
willing to increase the highest bid with the amount of EUR 10, until it reaches
an upper limit of EUR 300. Similarly, we assume that the second bidder has an
initial offer of EUR 100, that the increasing step is of EUR 30, and that the
maximal bid is EUR 400. We also assume that both bidders have the goal of
buying a bike. The implementation of the bidders’ planning goal rule suggests
that these are naive, as we can easily foresee the winner. The auction stops when

Reo Connectors as Coordination Artifacts in 2APL Systems 51

Fig. 6. The Auction Connector with a Validator for bidder1

the bidder with the smallest upper limit submits 0, in our case after bidder1
bids EUR 290. This means that bidder2 wins the bike for EUR 310. Running
the application confirms our expectations.

For the sake of clarity, our scenario is on purpose simple. However, we could
further make it more complex. For example, we could implement a component
which validates the bids submitted by the agents: here we assume that the bid-
ders always submit a higher bid than the previous one, however, this is a par-
ticular case. It is possible that the bidders have a different implementation, and
that we might not even have access to the source code. It follows that it is desir-
able to impose a validation step in the Reo connector implementing the auction.
Figure 6 shows the result of adding a validator component for bidder1.

The component Validator simply compares the bid submitted by the agents
with the previous ones. In order to record previous bids and input them to the
Validator we basically create a new node cache and a Sync channel connecting
the input of Max to cache, such that each time bidder1 submits a valid bid this
value is fed to cache. The node cache is connected to the input of Validator
through a full FIFO1, which initially, at the first round contains value 0. The
SyncDrain channel ensures that the Validator component can fetch data only
when the bidder submits a bid. Only if the bid is greater than the value read
from the cache is the cache updated by inserting the bid, otherwise not. Note
that in such a situation the flow of data through the connector is stopped.

4.2 Animating and Model-Checking Auctions

The Eclipse Coordination Tools are useful not only in designing Reo connectors
but also in verifying them, as they contain an animation and a model-checker
tool. The Reo animation is handy in the design phase. It helps the programmer to
better understand the data flow in the Reo connector. The Reo model-checker [9]
can be used in model-checking whether properties expressed in Branching Time
Stream Logic (BTSL) are valid for the designed Reo coordination artifacts.

BTSL combines features of CTL [4], PDL [7] and time data stream logic
(TDSL) [2]. We can therefore express properties like ∀〈bid1 ∧ bid2〉true. This
means that for all executions, there exists a prefix which satisfies the constraint

52 F. Arbab et al.

Fig. 7. The Auction Connector with a
Sequencer

Fig. 8. A 2-Sequencer Connector

bid1∧bid2 such that it reaches a state where true holds. The constraint bid1∧bid2
denotes that the operations on the nodes bid1 and bid2 happen simultaneously.
The constraints in PDL-like formulas can also be defined on the data passing
through nodes. A property like ∀〈dbid1 = di1〉true expresses that for all paths
there exists a prefix where it holds that the data written at the node bid1 (sym-
bolically denoted by dbid1) is the same with the data di1 read at the node i1.

We can further extend our example by adding a sequencer connecting the
sources and the sink of Max, as it can be noticed in Figure 7. A two place
sequencer is described in Figure 8. It consists of two FIFO1 and three Sync
channels, with the leftmost FIFO1 being initialised with a data item (the value
is irrelevant). It ensures that the read operations can succeed only in the strict
order from left to right. Such a connector is generic, one just needs to insert
some more pairs of Sync and FIFO1 channels in order to obtain a k-Sequencer.

Given the connector described in Figure 7 we can model-check that it can
never be the case that the component Max outputs a higher bid before receiving
the actual value of the highest bid: ¬∃〈readMax1; bid1〉true. The regular expres-
sion readMax1; bid1 has precisely the meaning of “an operation on readMax1
is followed by an operation on bid1”. As one might expect, all the properties
defined above hold for the connector from Figure 7.

Currently, no model checking tools exist for 2APL programs. However, using
Reo encourages a compositional approach to the verification of systems, where
(1) the externally observable behaviour of each 2APL agent is represented by a
constraint automaton; (2) the system is verified as the product of the constraint
automata of its agents and Reo connectors; and (3) the compliance of each
individual agent with its constraint automaton model is verified separetely.

5 Conclusions and Future Work

We have presented a mechanism for the integration of the existing Reo tools
and 2APL platform. Such an integration enables the MAS programmer to in-
corporate Reo connectors as coordination artifacts into 2APL systems. Though

Reo Connectors as Coordination Artifacts in 2APL Systems 53

not presented in this paper, it is possible to have more than one Reo connector
controlling the execution of the agents. Thus, scenarios like “agents participating
in more than one auction at the same time” are indeed implementable. In such
a way, the mas applications are more modular, distributed and multitasking.

We remark that the coordination patterns imposed by Reo connectors are not
suitable for expressing organisational concepts like norms or sanctions. Thus,
further work will focus on extending the 2APL platform such that conceptually
different coordination artifacts are incorporated into 2APL systems. Another
long term project concerns scalability issues. Currently, the number of the agents
specified in a mas file is a priori fixed, and the same holds for the elements of a
Reo network. However, there is current work on dynamic reconfiguration of Reo
networks which could be integrated such that the network copes with agents
entering and leaving a mas system.

References

[1] Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

[2] Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and temporal logics for timed
component connectors. In: SEFM 2004: Proceedings of the Software Engineering
and Formal Methods, Second International Conference, Washington, DC, USA,
pp. 198–207. IEEE Computer Society Press, Los Alamitos (2004)

[3] Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
reo by constraint automata. Sci. Comput. Program 61(2), 75–113 (2006)

[4] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986)

[5] Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

[6] Dastani, M., Arbab, F., de Boer, F.: Coordination and composition in multi-
agent systems. In: AAMAS 2005: Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems, pp. 439–446. ACM
Press, New York (2005)

[7] Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

[8] Guillen-Scholten, J., Arbab, F., de Boer, F., Bonsangue, M.: Mocha-pi, an exoge-
nous coordination calculus based on mobile channels. In: SAC 2005: Proceedings
of the 2005 ACM symposium on Applied computing. ACM Press, New York (2006)

[9] Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. Electron. Notes Theor. Comput. Sci. 175(2), 19–37 (2007)

[10] Wojciechowski, P.T., Sewell, P.: Nomadic pict: Language and infrastructure design
for mobile agents. IEEE Concurrency 8(2), 42–52 (2000)

A Verification Framework for
Normative Multi-Agent Systems

Lăcrămioara Aştefănoaei1, Mehdi Dastani2,
John-Jules Meyer2, and Frank S. de Boer1

1 CWI, Amsterdam, The Netherlands
2 Universiteit Utrecht, The Netherlands

Abstract. This paper presents a programming language that facilitates
the implementation of coordination artifacts which in turn can be used to
regulate the behaviour of individual agents. The programming language
provides constructs inspired by social and organisational concepts. The
operational semantics of the language is prototyped in Maude, a rewrite
logic software. Properties of the coordination artifacts are model-checked
with the Maude LTL model-checker.

1 Introduction

One of the challenges in the design and development of multi-agent systems is
to coordinate and control the behaviour of individual agents. Some approaches
aim at achieving this objective by means of exogenous coordination artifacts,
which are designed and built in terms of concepts such as action synchroni-
sation and resource access relation [1,2]. Other approaches advocate the use of
social and organisational concepts (e.g., norms, roles, groups, responsibility) and
mechanisms (monitoring agents’ actions and sanctioning mechanisms) to organ-
ise and control the behaviour of individual agents [3]. Yet other approaches aim
at combining these by proposing organisation-based coordination artifacts, i.e.,
coordination artifacts that are designed and developed in terms of social and or-
ganisational concepts [4,5]. In such combined approaches, a multi-agent system
is designed and developed in terms of an organisation artifact and the constitut-
ing individual agents. In order to ensure that the developed multi-agent systems
achieve their overall design objectives and satisfy some global desirable proper-
ties, one has to verify the organisation artifact that constitutes the coordination
and control part of the multi-agent system.

In this paper, we present a verification framework for normative multi-agent
systems in which individual agents are coordinated and controlled by norm-
based organisation artifacts. Such artifacts refer to norms as a way to signal
when violations take place and sanctions as a way to respond (by means of
punishments) in the case of violations. Basically, a norm-based artifact observes
the actions performed by the individual agents, determines their effects in the
environment (which is shared by all individual agents), determines the violations
caused by performing the actions, and possibly, imposes sanctions.

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 54–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Verification Framework for Normative Multi-Agent Systems 55

We first present a programming language that is designed to facilitate the
implementation of norm-based organisation artifacts. The operational semantics
of the language makes it easy to prototype it in Maude [6], a rewriting logic
software. Rewriting logic can be used as a computational framework for modu-
lar programming language design and formal analysis [7]. It has the benefit that
there is no gap between semantics and implementation. This has a great advan-
tage over the situations where one needs to implement an interpreter in order to
execute the semantics of the designed language. It is also the case that rewrit-
ing logic implementations like Maude offer prototype parsers for free since they
support user-definable syntax. Another benefit is rapid prototyping of program-
ming language designs. This makes it easier to experiment with new language
constructions since one needs only to define and not also to implement them.
Furthermore, rewriting logic offers a suite of generic tools for formal analysis,
for instance, the Maude theorem prover and LTL model-checker, which can be
used to prove properties of the language definitions.

2 Programming Normative Multi-Agent Systems

In this section, we present a programming language that facilitates the imple-
mentation of normative multi-agent systems. Individual agents are assumed to
be implemented in a programming language, not necessarily known to the multi-
agent system programmer, who is assumed to have a reference to the (executable)
programme of each agent. Most noticeably, it is not assumed that the agents are
able to reason about the norms of the system since we do not make any assump-
tions about the internals of individual agents. Agents perform their actions in
an external environment which is part of and controlled by the organisation.
Actions are assigned pre- and post-conditions. If the pre-condition holds in the
current state of the environment (the execution of an action is enabled), then the
multi-agent system organisation determines the effect of the action by updating
the state with the facts which represent the post-condition. We consider norms
as being represented by counts-as rules [8], which ascribe ”institutional facts”
(e.g. ”a violation has occurred”) to ”brute facts” (e.g. ”the agent is in the train
without a ticket”). In our framework, brute facts constitute the factual state
of the multi-agent organisation, which is represented by the environment (ini-
tially set by the programmer), while institutional facts constitute the normative
state of the multi-agent organisation. The institutional facts are used with the
explicit aim of triggering system’s reactions (e.g. sanctions). Sanction rules de-
termine what brute facts will be brought about by the system as a consequence
of normative facts. Typically, such brute facts are sanctions, such as fines.

2.1 Syntax

In order to represent brute and institutional facts in our normative multi-agent
system programming language, we introduce two disjoint sets of first-order atoms
<b-atoms> and <i-atoms> to denote these facts. Moreover, we use <ident> to

56 L. Aştefănoaei et al.

〈N-MAS Prog〉 = "Agents:" (〈agentName〉 〈agentProg〉 [〈nr〉])+

"Facts:" 〈bruteFacts〉
"Effects:" 〈effects〉
"Counts-As rules:" 〈counts-as〉
"Sanction rules:" 〈sanctions〉 ;

〈bruteFacts〉 = 〈b-literals〉 ;
〈effects〉 = ("{"〈b-literals〉"}" 〈actName〉 "{"〈b-literals〉"}")+ ;
〈counts-as〉 = (〈b-literals〉 "=>" 〈i-literals〉)+ ;
〈sanctions〉 = (〈i-literals〉 "=>" 〈b-literals〉)+ ;
〈agentName〉 = 〈ident〉 ;
〈agentProg〉 = 〈ident〉 ;
〈nr〉 = 〈int〉 ;
〈actName〉 = 〈ident〉 ;
〈b-literals〉 = 〈b-literal〉 {"," 〈b-literal〉} ;
〈i-literals〉 = 〈i-literal〉 {"," 〈i-literal〉} ;
〈b-literal〉 = 〈b-atom〉 | "not" 〈b-atom〉 ;
〈i-literal〉 = 〈i-atom〉 | "not" 〈i-atom〉 ;

Fig. 1. The EBNF syntax of normative multi-agent programs

denote a string and <int> to denote an integer. Figure 1 presents the syn-
tax of the language in EBNF notation. A normative multi-agent system pro-
gramme N-MAS_Prog starts with the specification of agents by means of names
(<agentName>), references to the (executable) agent programmes (<agentProg>),
and the number of agents to be created (<nr>). Next, one specifies the initial
state of the environment by means of a set of first order literals. Effects are spec-
ified by means of action names, pre- and post conditions. For simplicity both
counts-as and sanction rules are specified by implications. The antecedents of
count-as rules denote either brute or institutional facts, while the consequents
denote only institutional facts. This allows rules to indicate that a certain brute
or institutional fact counts as another institutional fact. For example, speeding
is a violation of traffic law (institutional fact), but this violation together with
not paying the fine in time (brute fact) is considered as another violation (in-
stitutional fact). The antecedents of sanction rules consist of literals denoting
institutional facts while the consequents of sanction rules consist of literals de-
noting brute facts. Figure 2 presents an example of a normative multi-agent
system programme that implements a small part of a train system. The pro-
gramme creates from the specification file passager_prog one agent psg. The
Facts determine that psg is not in the train and has no ticket. The Effects indi-
cate that psg performing enter when not in the train, results in psg being in the
train (with or without a ticket). The Counts-As rules state that being in the
train without having a ticket is a specific violation (viol_ticket(X)). The rule
functions as an enforcement mechanism and it is based on the idea of respond-
ing to a violation such that the system returns to an acceptable state. However,
there are situations where stronger requirements need to be implemented, for
example, where it is never the case that psg enters the train without a ticket.
This is what we call regimentation and in order to implement it we consider a

A Verification Framework for Normative Multi-Agent Systems 57

Agents:
psg passenger prog 1

Facts:
-in train(psg), -ticket(psg)

Effects: at platform(X) }
{ -ticket(X) } buy ticket(X) { ticket(X) }
{ -in train(X) } enter(X) { in train(X) }

at platform(X), in train(X) } -in train(X) }
Counts-As rules:

in train(X), -ticket(X) => viol ticket(X)
Sanction rules:

viol ticket(X) => fined(X,25)

Fig. 2. An example of a Normative MAS file

specifically designated literal viol⊥(X). The operational semantics of the lan-
guage ensures that the designated literal viol⊥(X) can never hold during any
run of the system. Intuitively, rules with viol⊥(X) as consequence could be
thought of as placing gates blocking an agent’s action. Finally, the aim of
Sanction rules is to determine that the violation of type viol_ticket(X)
causes the sanction fined(X,25) (e.g., a 25 EUR fine).

2.2 Operational Semantics

The state of a normative multi-agent system consists of the state of the external
environment, the normative state of the organisation, and the states of individual
agents.

Definition 1 (Normative MAS Configuration). Let Pb and Pn be two dis-
joint sets of first-order literals denoting atomic brute and normative facts (in-
cluding viol⊥), respectively. Let Ai be the configuration of individual agent i. The
configuration of a normative multi-agent system is defined as 〈A, σb, σn〉 where
A = {A1, . . . , An}, σb is a consistent set of ground literals from Pb denoting the
brute state of the multi-agent system, and σn is a consistent set of ground literals
from Pn denoting the normative state of the multi-agent system.

Before presenting the transition rules for specifying possible transitions between
normative multi-agent system configurations, we need to define the ground clo-
sure of a set of literals (e.g., literals representing the environment) under a set
of rules (e.g., counts-as or sanction rules1) and the update of a set of ground
literals (representing the environment) with another set of ground literals based
on the specification of an action’s effect. Let l = (Φ(x)⇒ Ψ(y)) be a rule, where
Φ and Ψ are two sets of first-order literals in which sets of variables x and y
occur. We assume that y ⊆ x and that all variables are universally quantified
1 Counts-as and sanctions are usually considered as being context dependent. Our

framework can easily be extended by considering both rule types in a non-monotonic
way capturing their context dependence.

58 L. Aştefănoaei et al.

in the widest scope. In the following, condl and consl are used to indicate the
condition Φ and the consequent Ψ of the rule l, respectively. Given a set R of
rules and a set X of ground literals, we define the set of applicable rules in X as:

ApplR(X) = { (Φ(x)⇒ Ψ(y))θ | Φ(x)⇒ Ψ(y) ∈ R ∧ X |= Φθ }

where θ is a ground substitution.
The ground closure of X under R, denoted as ClR(X), is inductively defined

as follows:

B : ClR
0 (X) = X ∪ (

⋃
l∈ApplR(X) consl)

S : ClR
n+1(X) = ClR

n (X) ∪ (
⋃

l∈ApplR(ClR
n (X)) consl)

We should emphasise that the counts-as rules obey some constraints. We consider
only sets of counts-as rules such that 1) they are finite; 2) they are such that
each condition has exactly one associated consequence (i.e., all the consequences
of a given condition are packed in one single set cons); and 3) they are such that
for counts-as rule k, l, if condk ∪ condl is inconsistent (i.e., contains p and -p),
then consk ∪ consl is also inconsistent. That is to say, rules trigger inconsistent
conclusions only in different states. Because of these properties (i.e., finiteness,
consequence uniqueness and consistency) of counts-as rules R one and only one
finite number m+1 can always be found such that ClR

m+1(X) = ClR
m(X) and

ClR
m−1(X) = ClR

m(X) and ClR
m+1(X) is consistent. Let such m+1 define the

ground closure X under R, i.e., ClR(X) = ClR
m+1(X) .

In order to update the environment of a normative multi-agent system with
the effects of an action performed by an agent, we use the specification of the
action effect as implemented in the normative multi-agent system programme,
unify this specification with the performed action to bind the variables used
in the specification, and add/remove the resulting ground literals of the post-
condition of the action specification to/from the environment. In the following,
we assume a function unify that returns the most general unifier of two first-order
expressions.

Definition 2 (Update Operation). Let x, y, and z be sets of variables whose
intersections may not be empty, ϕ(y) α(x) ψ(z) be the specification of the effect
of action α, and α(t) be the actual action performed by an agent, where t consists
of ground terms. Let σ be a ground set of literals, unify(α(x), α(t)) = θ1, and
σ |= ϕ(t)θ1θ2 for some ground substitution θ2. Then, the update operation is
defined as follows:

update(σ, α(t)) = σ \ {Φ | Φ ∈ ψ(z)θ1θ2 ∧ NegLit(Φ)}
∪ {Φ | Φ ∈ ψ(z)θ1θ2 ∧ PosLit(Φ)}

In this definition, the variables occurring in the post-condition of the action
specification are first bound and the resulted ground literals are then used to
update the environment. Note that negative literals from the post-condition
(i.e., NegLit(φ)) are removed from the environment and positive literals (i.e.,
PosLit(φ)) are added to it.

A Verification Framework for Normative Multi-Agent Systems 59

We do not make any assumptions about the internals of individual agents.
Therefore, for the operational semantics of normative multi-agent system we

assume Ai
α(i,t)−→ A′

i as being the transition of configurations for individual agent
i. Given this transition, we can define a new transition rule to derive transitions
between normative multi-agent system configurations.

Definition 3 (Transition Rule). Let 〈A, σb, σn〉 be a configuration of a nor-
mative multi-agent system. Let Rc be the set of counts-as rules, Rs be the set of
sanction rules, and α be an external action. The transition rule for the derivation
of normative multi-agent system transitions is defined as follows:

Ai
α(i,t)−→ A′

i σ′
b = update(σb, α(t)) σ′

n = ClRc(σ′
b) \ σ′

b

σ′
n |= viol⊥ S = ClRs(σ′

n) \ σ′
n σ′

b ∪ S |= ⊥
〈A, σb, σn〉 → 〈A′, σ′

b ∪ S, σ′
n〉

(NMas-act)

where Ai ∈ A, A′ = (A \ {Ai}) ∪ {A′
i} and viol⊥ is the designated literal for

regimentation.

The transition rule (NMas-act) captures the effects of performing an external
action by an individual agent on both external environments and the normative
state of the multi-agent system. First, the effect of α(t) on the environment
σb is computed. Then, the updated environment is used to determine the new
normative state of the system by applying all counts-as rules to the new state of
the environment. Finally, possible sanctions are added to the environment state
by applying sanction rules to the new normative state of the system. Note that
the external action of an agent can be executed only if it does not result in a
state containing viol⊥. This captures exactly the regimentation of norms. Thus,
once assumed that the initial normative state does not include viol⊥, it is easy
to see that the system will never be in a viol⊥ -state.

3 Prototyping Normative Multi-Agent Systems in Maude

In this section we describe a rewrite-based framework for modeling the program-
ming language defined in Section 2. The main purpose and justification of our
effort is verification. We want to be able to reason, on the one hand, about
concrete normative multi-agent systems, and on the other hand, about the gen-
eral semantics of the language. However, in this paper, we will deal only with
properties of concrete normative multi-agent systems.

Rewriting logic is a logic of becoming and change, in the sense that it reasons
about the evolution of concurrent systems. This follows from the fact that rewrite
theories (the specifications of the rewriting logic) are defined as tuples 〈Σ, E, R〉,
where Σ is a signature consisting of types and function symbols, E is a set of
equations and R is a set of rewrite rules. The signature describes the states of the
system, while the rewrite rules are executions of the transitions which model the
dynamic of the system. Furthermore, the rules are intrinsically non-deterministic
and this makes rewriting a good candidate for modeling concurrency.

60 L. Aştefănoaei et al.

We choose Maude as a rewriting logic language implementation since it is
well-suited for prototyping operational semantics and since it comes with an
LTL model-checker, on which we heavily rely in verification.

In what follows, we briefly present the basic syntactic constructions which
are needed for understanding the remain of this section. Please refer to [6] for
complete information. Maude programs are called modules. A module consists of
syntax declaration and statements. The syntax declaration is called signature and
it consists of declarations for sorts, subsorts and operators. The statements are
either equations, which identify data, or rewrite rules, which describe transitions
between states. The modules where the statements are given only by equations
are called functional modules, and they define equational theories 〈Σ, E〉. The
modules which contain also rules are called system modules and they define
rewrite theories 〈Σ, E, R〉. Modules are declared using the keywords fmod (mod)
<ModuleName> is <DeclarationsAndStatements> endfm (endm). Modules can
import other modules using the keywords protecting, extending, including
followed by <ModuleName>. Module importation helps in building up modular
applications from short modules, making it easy to debug, maintain or extend.

We now detail syntax declaration. The first thing to declare in a module is
sorts (which give names for data types) and subsorts (which impose orderings
on sorts). Take, for example, the declaration of a sort Agent as a subsort of
AgentSet:

sorts Agent AgentSet . subsort Agent < AgentSet.

We can further declare operators (functions) defined on sorts (types) using the
construction:

op <OpName> : <Sort-1> ... <Sort-k> -> <Sort>
[<OperatorAttributes>].

where k is the arity of the operator. Take, for instance, the following operator
declarations:

ops a1 a2 : -> Agent . op _*_ : AgentSet AgentSet -> AgentSet [comm
assoc].

where the operators a1, a2 are constants (their arity is 0) of sort Agent and the
associative and commutative operator * is a binary function in mixfix form (using
underscores) with the meaning of a ”union” operator. Variables are declared
using the keyword var, for example var A : Agent represents the declaration
of a variable A of sort Agent. Terms are either variables, or constants, or the
result of the application of an operator to a list of argument terms which must
coincide in size with the arity of the operator.

Equations are declared using one of the following constructions, depending on
whether they are meant to be conditional:

eq [<Label>] : <Term-1> = <Term-2> . ceq [<Label>] : <Term-1> =
<Term-2> if <Cond-1> /\ ... /\ <Cond-k>.

A Verification Framework for Normative Multi-Agent Systems 61

where Cond-i is a condition which can be in turn either an ordinary equa-
tion t = t’, a matching equation t := t’ (which is true only if the two terms
match), or a Boolean equation (which contain, e.g., the built-in (in)equality =/=,
==, and/or logical combinators such as not, and, or). As an illustration the
conditional equation labeled init defines the constant agS as a set with two
elements a1, a2 in the case the elements are distinct:

op agS : -> AgentSet . ceq [init] : agS = a1 * a2 if a1 =/= a2.

Rewrite rules can also be conditional. Their declaration follows one of the
patterns:

rl [<Label>] : <Term-1> => <Term-2> . crl [<Label>] : <Term-1> =>
<Term-2> if <Cond-1> /\ ... /\ <Cond-k>.

where Cond-i can involve equations, memberships (which specify terms as having
a given sort) and other rewrites. Take, for instance, the rule step:

crl [step] : agS => a’ * a2 if a1 => a’.

which states that agS changes if a1 is rewritten to a’, where we consider a’ as
a constant of sort Agent.

3.1 Executable Normative Multi-Agent Systems

We prototype the language for normative multi-agent systems in two modules: the
first one, which we call SYNTAX, is a functional module where we define the syntax
of the language, and the latter, which we call SEMANTICS, is a system module where
we implement the semantics, namely the transition rule (NMas-act).

We recall that the state of a normative multi-agent system is constituted
by the states of the agents together with the set of brute facts (representing
the environment) and normative facts. The following lines, extracted from the
module SYNTAX, represent the declaration of a normative multi-agent system and
the types on which it depends:

sorts BruteFacts NormFacts NMasState . op <_,_,_> : AgentSet
BruteFacts NormFacts -> NMasState.

The brute (normative) facts are sets of ground literals. The effects are imple-
mented by means of two projection functions, pre and post which return the
enabling condition and the effect of a given action executed by a given agent:

op pre : Action Qid -> Query . op post : Action Qid -> LitSet.

Norms or sanctions are implemented similarly. Both have two parameters, an
element of type Query representing the conditions, and an element of type LitSet
representing the consequents. Take, for example, the declaration of norm(s):

sorts Norm Norms . op norm : Query LitSet -> Norm . subsorts Norm <
Norms . op _*_ : Norms Norms -> Norms [assoc comm].

The effect of a norm is to update the collection of normative facts whenever its
condition matches either the set of brute facts or the set of normative facts:

62 L. Aştefănoaei et al.

op applyNorms : Norms Norms BruteFacts NormFacts NormFacts
-> NormFacts.

ceq applyNorms(NS, norm(Q, E) * NS’, BF, NF, OldNF) =
applyNorms(NS, NS’, BF, update(NF, E), NF)
if matches(Q, BF ; NF) =/= noMatch.

where NS is an auxiliary variable which we need in order to compute the transitive
closure of the normative set:

ceq applyNorms(NS, empty, BF, NF, OldNF) =
applyNorms(NS, NS, BF, NF, NF) if NF =/= OldNF.

eq applyNorms(NS, empty, BF, NF, NF) = NF [owise].

meaning that we apply the norms until no normative fact can be added anymore.
The application of norms entails the application of sanctions which, in a sim-

ilar manner, update the brute facts when their conditions match the set of nor-
mative facts:

ceq applySanctions(SS, sanction(Q, E) * SS’, NF, BF, OldBF) =
applySanctions(SS, SS’, NF, update(BF, E), BF)
if matches(Q, NF) =/= noMatch.

Please note that we do not explain here the constructions Action, Query, LitSet,
update, matches. This has already been done in [9] where we need such construc-
tions for prototyping in Maude a BDI agent language which we call Belief Update
programming Language (BUpL). For a better insight, we provide a basic web ap-
plication illustrating the implementation at http://homepages.cwi.nl/∼
astefano/agents/bupl-org.php.

In a normative multi-agent system certain actions of the agents are monitored.
Actions are defined by their pre- (enabling) and their post-conditions (effects).
We recall the basic mechanism which takes place in the normative multi-agent
system when a given monitored action is executed. First the set of brute facts is
updated with the literals contained in the effect of the action. Then all possible
norms are applied and this operation has as result an update of the set of norma-
tive facts. Finally all possible sanctions are applied and this results in another
update of the brute facts. The configuration of the normative multi-agent sys-
tem changes accordingly if and only if it is not the case that violationReg, the
literal we use to ensure regimentation (corresponding to viol⊥ in Section 2),
appears in the brute facts. Consequently, the semantics of the transition rule
(NMas-act) is implemented by the following rewrite rule:

crl [NMas-act] : < A * AS, BF, NF > =>
< A’ * AS, BF’; BF’’, NF’ >

if A => [Act] A’
/\ S := matches(pre(Act, Id), BF) /\ S =/= noMatch
/\ BF’ := update(BF, substitute(post(Act, Id), S))
/\ NF’ := setminus(applyNorms(nS, nS, BF’, NF, NF), BF’)
/\ BF’’ := setminus(applySanctions(sS, sS, BF’, NF’, BF’), NF’)
/\ matches(violationReg(Id), NF’) == noMatch.

http://homepages.cwi.nl/~
astefano/agents/bupl-org.php

A Verification Framework for Normative Multi-Agent Systems 63

where nS, sS are constants defined as the sets of instantiated norms, sanctions.
Please note that we implement negation as failure and this implies that our
update function preserves the consistency of the set of facts.

Given the above, we can proceed and describe how we can instantiate a con-
crete normative multi-agent system. We do this by creating a system module
PSG-NMAS where we implement the constructions specified in Figure 2:

mod PSG-NMAS is
including SEMANTICS .
including BUPL-SEMANTICS .
op psg : Qid BpMentalState -> Agent .
eq pre(buy-ticket, X) = ~ has-ticket(X) .
eq post(buy-ticket, X) = has-ticket(X) .
eq pre(enter, X) = ~ in-train(X) .
eq post(enter, X) = in-train(X) .
op n : Qid -> Norm .
eq [norm] : n(X) = norm(in-train(X) /\ ~ has-ticket(X),

ticket-violation(X)) .
op s : Qid -> Sanction .
eq [sanction] : s(X) = sanction(ticket-violation(X),

pay-fee-ticket(X)) .
op nmas-state : Qid -> NMasState .
eq [init] : nmas-state(X) = < psg(X), nil, nil > .

endm

The operator psg associates an identity to a BUpL agent. We stress that using
BUpL agents is only a choice. Any other agent prototyped in Maude can be used
instead. The actions being monitored are buy-ticket, enter, with obvious pre-
and post-condtions. The equation norm defines a norm which introduces a ticket
violation and the equation sanction introduces a punishment in the case of a
ticket violation. We further consider that psg has a plan which consists of only
one action, enter, meaning he enters the train without a ticket. This gives rise
to special situations where model-checking turns out to be useful, as we will see
in Section 3.2.

3.2 Model-Checking Normative Multi-Agent Systems

In order to model-check the system defined in the module PSG-NMAS we create
a module PSG-NMAS-PREDS where we implement the predicates regimentation
and enforcement as introduced in Section 2. Creating a new module is justi-
fied by the fact that state predicates are part of the property specification and
should not be included in the system specification. In such a module we need to
import two special modules LTL and SATISFACTION. Both are contained in the
file model-checker.maude which must be loaded in the system before model-
checking. We further need to make NMasState a subsort of the sort State which
is declared in SATISFACTION. This enables us to define predicates on the states
of a normative multi-agent system. A state predicate is an operator of sort Prop.
The operator op |= : State Formula -> Bool is used to define the seman-
tics of state predicates.

64 L. Aştefănoaei et al.

mod PSG-NMAS-PREDS is
including PSG-NMAS .
protecting SATISFACTION .
extending LTL .
subsort NMasState < State .
op fact : Lit -> Prop .
ceq < AS, BF, NF > |= fact(L) = true if in(L, BF) = true .
ops enforcement regimentation : Qid -> Prop .
eq [enf] : enforcement(X) =

fact(in-train(X)) /\ not fact(has-ticket(X))
-> <> fact(pay-fee-ticket(X)) .

eq [reg] : regimentation(X) =
[] (fact(in-train(X)) -> fact(has-ticket(X))).

endm

The state predicate fact(L) holds if and only if there exists a ground literal
L in the set of brute facts of the normative multi-agent system. We need this
predicate in order to define the properties enforcement and regimentation, which
we are interested in model-checking. The equation enf defines the predicate
enforcement such that it holds if and only if any agent X which is inside the train
and has no ticket (fact(in-train(X)) /\ not fact(has-ticket(X)) can be
entailed from the brute facts) will eventually pay a fee. On the other hand, the
equation reg defines the predicate regimentation such that it holds if and only
if it is always the case that any agent in the train has a ticket.

If we model-check whether enforcement holds for an agent identified by a1:

Maude> red modelCheck(nmas-state(’a1), enforcement(’a1)) . reduce in
PSG-NMAS-PREDS :

modelCheck(nmas-state(’a1), enforcement(’a1)).
result Bool : true

we obtain true, thus the normative structure enforces a1 to pay a fee whenever
it enters without a ticket. This is not the case for regimentation, the result of
model-checking is a counter-example illustrating the situation where the agent
enters the train without a ticket. This is because the implemented norm does
not raise the special literal violationReg(X) (the already defined viol⊥(X)).
However, if we replace in PSG-NMAS the equation norm by the following one:

eq [norm] : n(X) = norm(in-train(X) /\ ~ has-ticket(X),
violationReg(X)).

the application of the norm results in the update of the normative facts with
violationReg(’a1) and, in consequence, the rule NMas-act is not applicable
and nmas-state(’a1) is a deadlock state. It follows that the result of the model-
checking is the boolean true, since in-train(’a1) is not in the brute facts. We
note that trivially regimentation would hold if the plan of psg consisted in buying
a ticket before entering the train.

A Verification Framework for Normative Multi-Agent Systems 65

4 Conclusions and Future Work

We have presented a language for implementing normative multi-agent systems.
In such a language one can implement organsiational artifacts like norms and sanc-
tions. These are meant to control/monitor the behaviour of individual agents. We
have further prototyped the language in Maude, a rewriting logic software. This
has the advantage of making it possible to model-check whether properties like
enforcement or regimentation hold in a given normative multi-agent system.

So far, we have applied model-checking to given instances of normative multi-
agent systems. However, it is also in our concern to define more generic properties
which characterise normative multi-agent systems at a more abstract (higher)
level. Further extensions of the language will be designed in the same idea which
we have promoted in this paper, namely counter-pointed by verification in the
Maude framework. Another direction for future work focuses on the integra-
tion of organisational artifacts in the existing 2APL platform [10]. 2APL is
an agent-oriented programming language that provides two distinguished sets
of programming constructs to implement both multi-agent as well as individ-
ual agent concepts. It is desirable to enrich it by incorporating such normative
structures as the ones introduced in this paper.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

2. Ricci, A., Viroli, M., Omicini, A.: Give agents their artifacts: the a&a approach
for engineering working environments in mas. In: Durfee, E.H., Yokoo, M., Huhns,
M.N., Shehory, O. (eds.) AAMAS, IFAAMAS, p. 150 (2007)

3. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

4. Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J.A., Arcos, J.L.: Ameli: An agent-based
middleware for electronic institutions. In: AAMAS, pp. 236–243. IEEE Computer
Society, Los Alamitos (2004)

5. Hübner, J.F., Sichman, J.S., Boissier, O.: Moise+: towards a structural, functional,
and deontic model for mas organization. In: AAMAS, pp. 501–502. ACM, New York
(2002)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

7. Serbanuta, T.F., Rosu, G., Meseguer, J.: A rewriting logic approach to operational
semantics (extended abstract). Electr. Notes Theor. Comput. Sci. 192(1), 125–141
(2007)

8. Searle, J.R.: The Construction of Social Reality. The Penguin Press, London (1995)
9. Astefanoaei, L., de Boer, F.S.: Model-checking agent refinement. In: Padgham, L.,

Parkes, D.C., Müller, J., Parsons, S. (eds.) AAMAS (2), IFAAMAS, pp. 705–712
(2008)

10. Dastani, M.: 2apl: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

Social Viewpoints for Arguing about Coalitions

Guido Boella1, Leendert van der Torre2, and Serena Villata1

1 Dipartimento di Informatica, University of Turin, Italy
{boella,villata}@di.unito.it

2 Computer Science and Communication, University of Luxembourg
leendert@vandertorre.com

Abstract. Frameworks for arguing about coalitions are based on non-monotonic
logic and are therefore formal and abstract, whereas social theories about agent
coalitions typically are based on conceptual modeling languages and therefore
semi-formal and detailed. In this paper we bridge the gap between these two re-
search areas such that social viewpoints can be used to argue about coalitions. We
formally define three social viewpoints with abstraction and refinement relations
among them, and we adapt an existing coalition argumentation theory to reason
about the coalitions defined in the most abstract social viewpoint.

1 Introduction

Dung’s argumentation theory [13] may be seen as a formal framework for nonmonotonic
logic and logic programming, and has been applied to many domains in which non-
monotonic reasoning plays a role, such as decision making or coalition formation [3].
Amgoud [1] proposes to use Dung’s argumentation theory and associated dialogue the-
ories as a formal framework for coalition formation, and she illustrates this idea by
formalizing a task based theory of coalition formation as in instance of Dung’s argu-
mentation theory.

In this paper we develop social viewpoints for arguing about coalitions. Social view-
points become more popular in multiagent systems, since the representation of multi-
agent systems as, for example, social networks, dependence networks, organizations,
or normative systems, focuses on the interactions among the agents and facilitates the
development of interaction mechanisms, agreement technologies or electronic institu-
tions. Castelfranchi [12] offers a general and influential framework for many social-
cognitive concepts and their relations, but due to the large number of concepts and their
detailed descriptions, this framework is only semi-formal. Consequently, it can be used
for conceptual modeling and conceptual analysis, but not for formal analysis or as the
basis of formal ontologies or argumentation frameworks. In general, the problem with
applying most existing social viewpoints is that they are often only semi-formal and
relatively detailed, whereas the argumentation models of Dung and Amgoud are formal
and abstract.

We therefor take our approach in [5] as a starting point, which not only defines so-
cial viewpoints on MAS, but also relates views of these viewpoints to each other using
abstraction and refinement relations. For example, a detailed BDI model can be ab-
stracted to a dependence network as used in early requirements analysis in Tropos [7].

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 66–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Social Viewpoints for Arguing about Coalitions 67

In related work we show how to use these formal representations to define criteria for
coalition formation [6], or measures for multiagent systems inspired by social network
analysis, such as the social importance of an agent in a system [4]. However, the social
viewpoints and the abstraction and refinement relations have been sketched only semi-
formally in a two page paper, and moreover we consider only absolute goals and static
dependence networks. In many agent programming languages, e.g. [14], and agent ar-
chitectures, e.g. [9], goals can be derived from the agent’s desires and beliefs, and in
Castelfranchi’s conceptual model, dependence relations can change over time.

In this paper we therefore address the following problems to increase the application
of our social viewpoints on multiagent systems:

1. How to develop social viewpoints which can be used in arguing about coalitions?
How to define a dynamic dependence network for agents with conditional goals?
How to define coalitions for dynamic dependence networks? How to pass from the
dynamic dependence networks view to the coalition view?

2. How to argue about coalitions using these social viewpoints? How to reason about
attack relations among coalitions?

While the agent view represents the agents of the systems, their goals and the actions
that they can perform to achieve these goals, the power view introduces conditional
goals, such as those goals that can be added by an agent to another one. We define the
dynamic dependence view as an abstraction of the power view, defined as a set of de-
pendencies that can be added thanks to existence of conditional goals. Abstracting from
the dynamic dependence view, we define the coalition view representing a coalition as
a set of dynamic dependencies where each agent either creates a dependency or fulfills
a goal.

In Amgoud’s formalization, an argument is a set of agents together with a task, and an
argument attacks another one if the two coalitions share an agent, or when they contain
the same task. It is therefore based on strong assumptions, for example that an agent
cannot be part of two coalitions at the same time. Since the attack relation is symmetric,
also preferences are introduced to resolve conflicts. We need to use different viewpoints
to describe coalitions since dynamic dependencies have two different roles. From the
internal point of view, an agent inside a coalition can be described by viewpoints and
this means that we can describe the coalition describing the agents and their goals and
capabilities to achieve the goals (agent view) or we can describe the agents inside the
coalition as a set of agents and the power relations that link these agents to each other
(power view) or, finally, we can describe a coalition as a set of dynamic dependencies
where an agent is made dependent on another one for a particular goal by means of
the addition of a new dependence by a third agent. From the external point of view,
instead, the addition of a new dependence can be represented as an attack relation from
a coalition to another one at coalitional view level. In this paper we describe and reason
about these attacks using argumentation theory.

The layout of this paper is as follows. In Section 2 we introduce the social viewpoints,
and relate them to each other by abstraction and refinement relations. In Section 3 we
introduce a modification of Amgoud’s argumentation theory to use the social viewpoints.

68 G. Boella, L. van der Torre, and S. Villata

2 Social Viewpoints

In classical planners, goals are unconditional. Therefore, many models of goal based
reasoners including our earlier model [5] define the goals of a set of agents A by a func-
tion goals : A → 2G, where G is the complete set of goals. However, in many agent
programming languages and architectures, goals are conditional and can be generated.
We therefore extend the agent view with conditional goals.

Definition 1 (Agent view). The Agent view is represented by the tuple 〈A, G, X, goals,
skills, R〉, where:

– A, G, X are disjoint sets of agents, goals, and decision variables,
– goals : A× 2X → 2G is a function associating with an agent its conditional goals,
– skills : A→ 2X is a function associating with agents their possible decisions, and
– R : 2X → 2G is a function associating with decisions the goals they achieve.

Example 1

– A = {a, b, c, d}, G = {g1, g2, g3, g4}, X = {x1, x2, x3, x4, x5}.
– goals(a, {}) = {g4}, goals(b, {x5}) = {g3}, goals(c, {}) = {g1},

goals(d, {}) = {g2}.
– skills(a) = {x5}, skills(b) = {x1}, skills(c) = {x2}, skills(d) = {x3, x4}.
– R({x1}) = {g1}, R({x2}) = {g2}, R({x3}) = {g3}, R({x4}) = {g4}.

The power to trigger a goal is distinguished from the power to fulfill a goal.

Definition 2 (Power view). The Power view is represented by the tuple
〈A, G, X, goals, power-goals, power〉, where A, G and X are sets of agents,
goals, and decision variables (as before), goals : A × 2X → 2G is a function (as
before), and:

– power-goals : 2A → 2(A×G) is a function associating with each set of agents the
goals they can create for agents, and

– power : 2A → 2G is a function associating with agents the goals they can achieve.

The power view can be defined as an abstraction of the agent view, in other words, the
agent view is a refinement of the power view. A set of agents B has the power to see to
it that agent a has the goal g, written as (a, g) ∈ power-goals(B), if and only if there
is a set of decisions of B such that g becomes a goal of a. A set of agents B has the
power to see to goal g if and only if there is a set of decisions of B such that g is a
consequence of it.

Definition 3. 〈A, G, goals, power-goals, power〉 is an abstraction from 〈A, G, X,
goals, skills, R〉 if and only if:

– (a, g) ∈ power-goals(B) if and only if ∃Y ⊆ skills(B) with skills(B) =
∪{skills(b) | b ∈ B} such that g ∈ goals(a, Y), and

– g ∈ power(B) if and only if ∃Y ⊆ skills(B) such that g ∈ R(Y).

Social Viewpoints for Arguing about Coalitions 69

Example 2 (Continued). Agent a has no power to fulfill goals, but he can create a goal
of agent d.

– power-goals({a}) = ({d}, {g3})
– power({b}) = {g1, g3}, power({c}) = {g2}, power({d}) = {g4}.

Due to the power to create goals, dependence relations are no longer static, but they
can be created by agents. We therefore have to extend the dependence networks devel-
oped by Conte and Sichman [23] and used in multiagent systems methodologies like
Tropos [7]. Dynamic dependence networks can be defined as follows [11].

Definition 4 (Dynamic dependence view). A dynamic dependence network is a tuple
〈A, G, dyndep〉 where A and G are disjoint sets of agents and goals (as before), and:

– dyndep : A × 2A × 2A → 22G

is a function that relates with each triple of sets
of agents all the sets of goals on which the first depends on the second, if the third
creates the dependency.

We write dep(a, B, G) for dyndep(a, B, ∅) = G.

Abstracting power view to a dynamic dependence network can be done as follows. Note
that in this abstraction, the creation of a dynamic dependency is based only on the power
to create goals. In other models, creating a dependency can also be due to creation of
new skills of agents.

Definition 5. 〈A, G, dyndep〉 is an abstraction of 〈A, G, power-goals, power〉, if we
have H ∈ dyndep(a, B, C) if and only if

1. ∀g ∈ H : (a, g) ∈ power-goals(C), and
2. H ⊆ power(B)

Example 3 (Continued). Agent b depends on agent d for goal g3, if agent a creates this
dependency: dep(a, d, g4), dep(d, c, g2), dep(c, b, g1), dyndep(b, {d}, {a}) = {{g3}}.

Combining these two abstractions, abstracting agent view to a dynamic dependence
network can be done as follows.

Proposition 1. 〈A, G, dyndep〉 is an abstraction of 〈A, G, X, goals, skills, R〉, if we
have H ∈ dyndep(a, B, C) if and only if

1. ∃Y ⊆ skills(C) such that H ⊆ goals(a, Y), and
2. ∃Y ⊆ skills(B) such that H ⊆ R(Y)

Finally, we define reciprocity based coalitions for dynamic dependence networks. We
represent the coalition not only by a set of agents, as in game theory, but as a set of
agents together with a partial dynamic dependence relation. Intuitively, the dynamic de-
pendence relation represents the “contract” of the coalition: if H ∈ dyndep(a, B, D),
then the set of agents D is committed to create the dependency, and the set of agents B
is committed to see to the goals H of agent a. The rationality constraints on such reci-
procity based coalitions are that each agent contributes something, and receives some-
thing back.

70 G. Boella, L. van der Torre, and S. Villata

Fig. 1. (a) - The coalition C1 of Example 4, (b) - Example of a set of agents that is not a coalition

Definition 6 (Reciprocity based Coalition). Given a dynamic dependence network
〈A, G, dyndep〉, a reciprocity based coalition is represented by coalition C ⊆ A to-
gether with dynamic dependencies dyndep′ ⊆ dyndep, such that

– if ∃b, B, D, H with H ∈ dyndep′(a, B, D) then a ∈ C, B ⊆ C and D ⊆ C (the
domain of dyndep′ contains only agents in coalition C), and

– for each agent a ∈ C we have ∃b, B, D, H with H ∈ dyndep′(b, B, D) such that
a ∈ B∪D (agent a contributes something, either creating a dependency or fulfilling
a goal), and

– for each agent a ∈ C ∃B, D, H with H ∈ dyndep(a, B, D) (agent a receives
something from the coalition).

The following example illustrates that dependencies will be created by agents only if
the new dependencies work out in their advantage.

Example 4 (Continued). Each agent of C1 = {a, b, c, d} creates a dependency or fulfills
a goal. In Figure 1, conditional goals are represented with dashed arrows while the
creation of new dependencies is represented with dotted ones. The arrows go from the
agent having the goal put as label of the arrow to the agent that has the power to fullfil
this goal. Figure 1 - (a) represents a set of agents composing a coalition in accordance
with Definition 6 while Figure 1 - (b) represents the same set of agents not forming a
coalition. The difference among the two figures is in the direction of the arrow joining
agents b and d.

The basic attack relations between coalitions are due to the fact that they are based
on the same goals. This is analogous to the conflicts between coalitions in Amgoud’s
coalition theory where two coalitions are based on the same tasks.

Definition 7. Coalition 〈C1, dyndep1〉 attacks coalition 〈C2, dyndep2〉 if and only if
there exists a1, a2, B1, B2, D1, D2, G1, G2, such that G1 ∈ dyndep1(a1, B1, D1),
G2 ∈ dyndep2(a2, B2, G2) and G1 ∩G2 = ∅.

The simplest kind of attack on an attack relation is to remove or add one of the depen-
dencies of the attacker.

Definition 8. Coalition 〈C, dyndep〉 attacks the attack from coalition 〈C1, dyndep1〉
on coalition 〈C2, dyndep2〉 if and only if there exists a set of agentsD ⊆
{a | ∃E, HC(a, E, H)} such that ∃a, B, G′C1(a, B, G′) and G ∈ dyndep(a, B, D).

Social Viewpoints for Arguing about Coalitions 71

Fig. 2. Dynamic dependence view and coalition view

Example 5. Assume we have eight agents, a, b, c, d, e, f, g, h and the dependencies of
Example 3: dep(a, {d}, {{g4}}), dep(d, {c}, {{g2}}), dep(c, {b}, {{g1}}),
dyndep(b, {d}, {a}, {{g3}}),
plus the following ones:

dep(e, {f}, {{g6}}), dep(f, {e}, {{g5}}), dep(g, {h}, {{g1}}), dep(h, {g}, {{g5}}),
dep(c, {h}, {{g1}}), dep(g, {b}, {{g1}}), dep(h, {e}, {{g5}}), dep(f, {g}, {{g5}}).

The possible coalitions are C1, C2 and C3 where:

C1 = {dep(a, {d}, {{g4}}), dep(d, {c}, {{g2}}), dep(c, {b}, {{g1}}),
dyndep(b, {d}, {a}, {{g3}})},

C2 = {dep(e, {f}, {{g6}}), dep(f, {e}, {{g5}})},
C3 = {dep(g, {h}, {{g1}}), dep(h, {g}, {{g5}})}.

Note that some of the dependencies remain outside all coalitions (e.g.,
dep(c, {h}, {{g1}}), dep(g, {b}, {{g1}}), dep(h, {e}, {{g5}}), dep(f, {g}, {{g5}}),
not reported in Figure 2). Thus, C1#C2, C2#C1, C2#C3 and C3#C2 due to the fact
that they share goals g1 and g5 respectively. Note that these attacks are reciprocal.

The coalitions attack each other since agents b and h on which respectively c and g
depend for g1 would not make their part hoping that the other one will do that, so to
have a free ride and get respectively g3 achieved by d and g5 by g.

We depict this situation in Figure 2: normal arrows connecting the agents represent
the dependencies among these agents (they can be labeled with the goal on which the
dependence is based), coalitions are represented by the ovals containing the agents of
the coalition, bold arrows indicate the attack relations among the coalitions (dashed
bold arrows are explained in the subsequent example).

3 Arguing about Coalitions

Argumentation is a reasoning model based on constructing arguments, identifying po-
tential conflicts between arguments and determining acceptable arguments. Amgoud [1]
proposes to use it to construct arguments to form coalitions, identifying potential con-
flicts among coalitions, and determine the acceptable coalitions. Dung’s framework [13]

72 G. Boella, L. van der Torre, and S. Villata

is based on a binary attack relation among arguments. In Dung’s framework, an
argument is an abstract entity whose role is determined only by its relation to other ar-
guments. Its structure and its origin are not known. In this section, following Amgoud,
we assume that each argument proposes to form a coalition, but we do not specify the
structure of such coalitions yet. We represent the attacks among arguments by #.

Definition 9 (Argumentation framework). An argumentation framework is a pair
〈A, #〉, where A is a set (of arguments to form coalitions), and # ⊆ A × A is a
binary relation overA representing a notion of attack between arguments.

The various semantics of an argumentation framework are all based on the notion of
defense. A set of arguments S defends an argument a when for each attacker b of a,
there is an argument in S that attacks b. A set of acceptable arguments is called an
extension.

Definition 10 (Acceptable arguments)

– S ⊆ A is attack free if and only if there are no arguments a1, a2 ∈ S such that a1
attacks a2.

– S defends a if and only if for all a1 ∈ A such that a1 attacks a, there is an alterna-
tive a2 ∈ S such that a2 attacks a1.

– S is a preferred extension if and only if S is maximal with respect to set inclusion
among the subsets of A that are attack free and that defend all their elements.

– S is a basic extension if and only if it is a least fix point of the function
F (S) = {a|a is defended by S}.

The following example illustrates argumentation theory.

Example 6. Let AF = 〈A, #〉 be an argumentation framework, where the set (of argu-
ments or coalitions) isA = {C1, C2, C3}, and {C1#C2, C2#C3} is the binary relation
over A representing a notion of attack between arguments. Due to the so-called rein-
statement principle of argumentation theory, the acceptable arguments are C1 and C3,
for any kind of semantics. C1 is accepted because it is not attacked by any other ar-
gument, and C3 is accepted because its only attacker C2 is attacked by an accepted
argument.

Amgoud [1] proposes to use preference-based argumentation theory for coalition for-
mation, in which the attack relation is replaced by a binary relationR, which she calls a
defeat relation, together with a (partial) preordering on the coalitions. Each preference-
based argumentation framework represents an argumentation framework, and the
acceptable arguments of a preference-based argumentation framework are simply the
acceptable arguments of the represented argumentation framework.

Definition 11 (Preference-based argumentation framework). A preference-based
argumentation framework is a tuple 〈A,R, �〉 where A is a set of arguments to form
coalitions,R is a binary defeat relation defined on A×A and � is a (total or partial)
pre-order (preference relation) defined on A × A. A preference-based argumentation
framework 〈A,R, �〉 represents 〈A, #〉 if and only if ∀a, b ∈ A, we have a#b if and
only if aRb and it is not the case that b � a (i.e., b � a without a � b). The extensions
of 〈A,R, �〉 are the extensions of the represented argumentation framework.

Social Viewpoints for Arguing about Coalitions 73

The following example illustrates the preference based argumentation theory.

Example 7 (Continued). Let PAF = 〈A,R, �〉 be a preference-based argumentation
framework, whereA = {C1, C2, C3} is a set of arguments to form coalitions,

{C1RC2, C2RC1, C2RC3, C3RC2}

a binary defeat relation defined onA×A and {C1 � C2, C2 � C3} a total order (pref-
erence relation) defined on A × A. PAF represents AF , so the acceptable arguments
are again C1 and C3, for any kind of semantics.

In general, preference-based argumentation frameworks are a useful and intuitive repre-
sentation for argumentation frameworks, but for the application of coalition formation
it is less clear where the preferences among coalitions come from. Moreover, when the
defeat relation is symmetric, as in Amgoud’s task based coalition theory, then it leads
to a lack of expressive power, because some attack cycles can no longer be represented
(see [17] for details).

Modgil [18] relates preferences to second-order attacks. Suppose that arguments a
and b attack each other, and that argument a is preferred to argument b. Modgil ob-
serves that we can then say that the preference attacks the attack relation from b to a.
The advantage of this perspective is that Modgil introduces also arguments which attack
attack relations, which he uses to represent non-monotonic logics in which the prior-
ities among the rules are represented in the formalism itself, rather than being given
a priori (such as Brewka’s theory [8], or Prakken and Sartor’s theory [20]). Whereas
Modgil presents his theory as an extension of Dung, such that he has to define new
semantics for it, in this paper we show how to define second order attacks as an in-
stance of Dung’s theory. Each second order argumentation framework represents an
argumentation framework, and the acceptable arguments of the second order argumen-
tation framework are simply the acceptable arguments of the represented argumentation
framework.

Definition 12. A second order argumentation framework is a tuple 〈AC ,A, not,
A#, #〉, where AC is a set of coalition arguments, A is a set of arguments such that
|A| = |AC |, not is a bijection from A to |A|, A# is a set of arguments that coalitions
attack each other, and # ⊆ (AC×A)∪(A×A#)∪(A#×AC)∪(AC×A#) is a binary
relation on the set of arguments such that for a ∈ AC and b ∈ A we have a#b if and
only if b = not(a), and for each a ∈ A#, there is precisely one b ∈ A such that b#a
and precisely one c ∈ AC such that a#c. A second order argumentation framework
〈AC ,A,A#, #〉 represents 〈A, #〉 if and only if A = AC ∪A∪A#. The extensions of
〈AC ,A,A#, #〉 are the extensions of the represented argumentation framework.

The intuition behind second order argumentation is the following. Attack relations are
substituted by argumentsA# representing attacks, so that these can be attacked in turn
by further arguments. However, the arguments A# differently from the original attack
relations have an existence which is more independent from the arguments which they
stem from. E.g., the attack of C1 to C2 is substituted by an argument C1,2. If C1 is at-
tacked, then its attack relations should not be considered anymore. Instead, if the attack

74 G. Boella, L. van der Torre, and S. Villata

Fig. 3. Graphical representation of Example 7

relation is substituted by an argument inA#, this argument continues to attack other ar-
guments even when the argument it stems from is attacked: e.g., if C1 is attacked, C1,2
continues to attack C2. Thus, to avoid this problem, for each argument in AC a new
argument C′

1 in A is created. This argument is created such that it attacks all the argu-
ments of A# representing the attack relations of C1 against other arguments. Besides
C1, C′

1 is added, attacking C1,2. C′
1 however should not attack C1,2 at any moment,

but only when C1 is attacked: for this reason, an attack relation between C1 and C′
1

is added, so that C′
1 attacks the attack relations stemming from C1 only when C1 is

attacked.
The following example illustrates the second order argumentation theory. The main

feature of not(C) arguments is just to ensure that if an argument is not accepted, then
it cannot attack other arguments. The argument C0 is a dummy argument to represent
the preferences, here used to map the second order framework to the preference-based
one. This example is visualized in Figure 3.

Example 8 (Continued). Let 〈AC ,A, not,A#, #〉 be a second order argumentation
framework, where AC = {C1, C2, C3, C0} is a set of coalition arguments, A =
{C′

1, C
′
2, C

′
3, C

′
0}, not is the bijection not(Ci) = C′

i ,A# = {C1,2, C2,1, C2,3, C3,2} is
a set of arguments that coalitions attack each other, and

{C1#C′
1, C2#C′

2, C3#C′
3, C0#C′

0, C
′
1#C1,2, C

′
2#C2,1, C

′
2#C2,3, C

′
3#C3,2,

C1,2#C2, C2,1#C1, C2,3#C3, C3,2#C2, C0#C1,2, C0#C3,2}

is a binary relation on the set of arguments. For the nested attack relations, we also write
C0#(C1#C2) and C0#(C3#C2). The acceptable argument is C2, together with C0,
C′

1, C′
3, C2,1, C2,3, for any kind of semantics. We can visualize second order argumen-

tation frameworks by not visualizing A or A#, and visualizing an indirect attack from
an element of AC to AC via an element of A# as an arrow, and an attack of an element
of AC to an element of A# as an attack on an attack relation, see [18] for examples of
such a visualization. This example shows that arguments that attack attack relations do
that directly.

Example 9 (Continues Example 5 - See Figure 2). Assume instead that dep(a, {d},
{{g4}}) is not present since the beginning and it happens that agent g of C2 has the
power to create it: i.e., it is substituted by dyndep(a, {d}, {g}, {{g4}}). Thus, C2 attacks

Social Viewpoints for Arguing about Coalitions 75

the attack relation between C1 and C2, C2#(C1#C2) by Definition 8: if coalition C1
remains potential, since nothing guarantees that g will create goal g4 of agent a without
receiving anything in exchange, then it cannot attack any other coalition. Moreover,
assume that dep(e, {f}, {{g6}}) is not present since the beginning and it happens that
agent h of C2 has the power to create it and, thus, the dependency is substituted by
dyndep(e, {f}, {h}, {{g6}}). Thus, C2 attacks the attack relation between C2 and C3,
C2#(C3#C2) by Definition 8. The only extension is {C2}.

We illustrate this situation in Figure 2: the attack relation on attack relations is de-
picted as bold dashed arrows pointing on other arrows.

Note that if in Example 8 argument C0 is identified with C2 (and C′
0 with C′

2), a
second order argumentation framework for the current example is obtained.

Finally, we show how to relate the argumentation frameworks. We illustrate how
second order argumentation frameworks can be seen as an extension of Dung’s argu-
mentation framework.

Proposition 2. An argumentation framework 〈A, #1〉 represents a second order argu-
mentation framework 〈AC ,A, not,A#, #2〉 when

1. AC = A, and
2. there is an element a ∈ A# for each pair of arguments b, c ∈ A such that b#1c,

with not(b)#2a and a#2c.
3. there are no arguments a ∈ A and b ∈ A# such that a#2b.

If 〈A, #1〉 represents 〈AC ,A, not,A#, #2〉, then the extensions of 〈A, #1〉 correspond
to the extensions of 〈AC ,A, not,A#, #2〉 intersected with A.

4 Related Work

Sichman [22] presents coalition formation using a dependence-based approach based
on the notion of social dependence introduced by Castelfranchi [12].

The application of argumentation frameworks to coalition formation has been dis-
cussed by Amgoud [1] and by Bulling et al. [10]. In Amgoud’s paper, a coalition may
have a cost and a profit, so the agents are able to evaluate each coalition. Unlike Am-
goud’s work [1], we do not provide the present paper with a proof theory since it is
derivable from the argumentation theory’s literature. Moreover, unlike Amgoud’s paper
[1], we do not define any kind of dialogue model among the agents involved in coalitions.

Another formal approach to reason about coalitions is coalition logic [19] and Al-
ternating Temporal Logic (ATL), describing how a group of agents can achieve a set
of goals, without considering the internal structure of the group of agents [2,15,16].
See [21] for a further discussion. Bulling et al. [10], instead, combine the argumen-
tation framework and ATL with the aim to develop a logic through which reasoning
at the same time about abilities of coalitions of agents and about coalitions forma-
tion. They provide a formal extension of ATL in which the actual computation of the
coalition is modeled in terms of argumentation semantics. The key construct in ATL
expresses that a coalition of agents can enforce a given formula. [10] presents a first ap-
proach towards extending ATL for modeling coalitions through argumentation. A differ-
ence regarding Amgoud’s paper, is the intuition, in accordance with ATL, where larger

76 G. Boella, L. van der Torre, and S. Villata

coalitions are more powerful than smaller ones. In Bulling’s paper, the actual compu-
tation of the coalition is modeled in terms of a given argumentation semantics in the
context of coalition formation. The paper’s approach is a generalization of the frame-
work of Dung for argumentation, extended with a preference relation. The basic notion
is that of a coalitional framework containing a set of elements (usually represented as
agents or coalitions), an attack relation (for modeling conflicts among these elements),
and a preference relation between these elements(to describe favorite agents/coalitions).
The notion of coalitional framework is based on the notion of framework for generating
coalition structures presented in Amgoud’s paper.

5 Summary and Further Research

Frameworks for arguing about coalitions are based on non-monotonic logic and are
therefore formal and abstract, whereas social theories about agent coalitions typically
are based on conceptual modeling languages and therefore semi-formal and detailed. In
this paper we bridge the gap between these two research areas such that social view-
points can be used to argue about coalitions.

For arguing about coalitions, we define three social viewpoints with abstraction and
refinement relations between them, and adapt existing coalition argumentation theory
to reason about the coalitions defined in the most abstract viewpoint, the coalition view
representing a coalition as a set of dynamic dependencies between agents. We define dy-
namic dependencenetworks by making the dependence relation conditional to the agents
that have the power to create it, distinguishing two kinds of power, not only to fulfill goals
as in static networks but also to create dependencies. Coalitions are defined by a kind of
“contracts” in which each agent both contributes to the coalition, and profits from it.

We need to use different viewpoints to argue about coalitions since dynamic depen-
dencies underline two different aspects of coalitions. From an internal point of view,
the agents inside a coalition can be described by viewpoints and thus we represent the
coalition, depending on the adopted abstraction, as a set of agents with their goals and
skills or as a set of agents related due the notion of power or, finally, as a set of dy-
namic dependencies. From an external point of view, instead, the addition of a new
dependence can be represented as an attack relation from a coalition to another one at
coalitional view level.

Subjects of further research are the use of our new theory for coalition formation.
For example, when two agents can make the other depend on itself and thus create
a potential coalition, when will they do so? Do these new ways to create coalitions
make the system more efficient, or more convivial? Moreover, new measures have to
be defined for the dynamic dependence networks, where we may find inspiration in
dynamic social network analysis.

References

1. Amgoud, L.: An Argumentation-Based Model for Reasoning About Coalition Structures. In:
Proceedings of ArgMAS 2005, pp. 217–228 (2005)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of
ACM 49(5), 672–713 (2002)

Social Viewpoints for Arguing about Coalitions 77

3. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. In-
tell. 171(10-15), 619–641 (2007)

4. Boella, G., Sauro, L., van der Torre, L.: From social power to social importance. In: Web
Intelligence and Agent Systems, pp. 393–404. IOS Press, Amsterdam (2007)

5. Boella, G., Sauro, L., van der Torre, L.: Social Viewpoints on multiagent Systems. In: Pro-
ceedings of AAMAS 2004, pp. 1358–1359 (2004)

6. Boella, G., Sauro, L., van der Torre, L.: Strengthening Admissible Coalitions. In: Proceedings
of ECAI 2006, pp. 195–199 (2006)

7. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems Journal 8, 203–236 (2004)

8. Brewka, G.: Reasoning about Priorities in Default Logic. In: AAAI 1994, pp. 940–945 (1994)
9. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the BOID archi-

tecture. Cognitive Science Quarterly 2(3-4), 428–447 (2002)
10. Bulling, N., Chesnevar, C.I., Dix, J.: Modelling Coalitions: ATL + Argumentation. In: Pro-

ceedings of AAMAS 2008, pp. 681–688 (2008)
11. Caire, P., Villata, S., van der Torre, L., Boella, G.: Conviviality Masks in Role-Based Insti-

tutions Multi-Agent Teleconferencing in Virtual Worlds. In: Proceedings of AAMAS 2008,
pp. 1265–1268 (2008)

12. Castelfranchi, C.: The micro-macro constitution of power. Protosociology 18, 208–269
(2003)

13. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–357
(1995)

14. Hindriks, K.V., De Boer, F.S., Van der Hoek, W., Meyer, J.-J.C.: Agent Programming in
3APL. Autonomous Agents and Multi-Agent Systems, 357–401 (1999)

15. van der Hoek, W., Wooldridge, M.: Tractable Multiagent Planning for Epistemic Goals. In:
Proceedings of AAMAS 2002, pp. 1167–1174 (2002)

16. van der Hoek, W., Jamroga, W., Wooldridge, M.: A Logic for Strategic Reasoning. In: Pro-
ceedings of AAMAS 2005, pp. 157–164 (2005)

17. Kaci, S., van der Torre, L.W.N., Weydert, E.: On the Acceptability of Incompatible Argu-
ments. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS, vol. 4724, pp. 247–258. Springer,
Heidelberg (2007)

18. Modgil, S.: An abstract theory of argumentation that accommodates defeasible reasoning
about preferences. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS, vol. 4724, pp. 648–659.
Springer, Heidelberg (2007)

19. Pauly, M.: A Modal Logic for Coalitional Power in Games. Journal of Logic and Computa-
tion 12, 146–166 (2002)

20. Prakken, H., Sartor, G.: Argument-Based Extended Logic Programming with Defeasible Pri-
orities. Journal of Applied Non-Classical Logics 7(1), 25–75 (1997)

21. Sauro, L.: Formalizing admissibility criteria in coalition formation among goal directed
agents, Dipartimento di Informatica, Universita di Torino, PhD Thesis (2005)

22. Sichman, J.S.: DEPINT: Dependence-Based Coalition Formation in an Open Multi-Agent
Scenario. Journal of Artificial Societies and Social Simulation 1(2) (1998)

23. Sichman, J.S., Conte, R.: Multi-agent dependence by dependence graphs. In: Proceedings of
AAMAS 2002, pp. 483–490 (2002)

Changing Institutional Goals and Beliefs of
Autonomous Agents

Guido Boella1, Leendert van der Torre2, and Serena Villata1

1 Dipartimento di Informatica, University of Turin, Italy
2 Computer Science and Communication, University of Luxembourg, Luxembourg

Abstract. Agents are autonomous and thus their goals and beliefs can-
not be changed by other agents or the environment, but from outside
the agents we can change their institutional goals and beliefs, that is, the
responsibilities and powers associated with their roles. In this paper, we
introduce a model of institutional dynamics, where the dynamics of an
institution is modeled by the creation or removal of responsibilities and
powers. We illustrate the change of institutional goals and beliefs using
a government scenario.

1 Introduction

Institutions are structures and mechanisms of social order and cooperation gov-
erning the behavior of a set of individuals. However, the formal analysis of the
institutions is challenging due to the complexity of its dynamics. For example,
the institution itself may change over time due to the behavior of the agents. To
model the dynamics of the institution, we use dependence networks developed
by Sichman and Conte [11], as they are used in the early requirement analysis
of Tropos [6].

The research question of this paper is: How to model the dynamics of de-
pendence networks between agents due to institutional change? In our model
presented in [3] we distinguish four views on multiagent systems without mak-
ing institutions explicit. The agent view represents the agents of the systems
introducing conditional goals, such as those goals that can be added by an agent
to another one. The power view is presented as an abstraction of the agent view
and it introduces two functions associating the agents with the goals they can
create to agents and with the goals they can achieve. The dynamic dependence
view is defined as an abstraction of the power view. In the model of [3], de-
pendencies can be created by a set of agents making sets of agents dependent
on each other, thanks to the power to trigger conditional goals. In this paper
we present an extension of this model with also removal of dependencies. The
challenge of the present paper is to explain how on the one hand agents are
autonomous and, thus, their goals and beliefs cannot change, but on the other
hand, the dependences between agents can change in an institution.

The paper is organized as follows. Section 2 introduces the running example,
Section 3 and 4 introduce our model of institutions, and Section 5 introduces
the dynamic social network. Related work and conclusions end the paper.

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 78–85, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Changing Institutional Goals and Beliefs of Autonomous Agents 79

2 Running Example: The Government Scenario

The government scenario models the relations among ministers, where the prime
minister has more powers than the other ministers, who have powers according
to their domain. At the non-institutional level, a minister needs a ministerial car
if she has to travel in town, she has to ask to the suitable office if she needs a
translation service, she has to ask to the office of public relations to set a press
conference if she needs to release a press statement, she has to contact the office
with the job to update web site and to ask it to do the changes if she needs
the publication on the web site of a particular office of new information, and
so on. Each item can be modeled as a goal of the minister and the agents on
which she depends to achieve her goals. For example, she depends on the office
of public relations to achieve the goal to program a press conference. Together,
these dependencies can be modeled as a social network.

From an institutional point of view, the government structure is hierarchical,
in the sense that the Prime Minister has more powers that of all the other minis-
ters, and the ministers have more powers than deputy-ministers. Consequently,
the ministers depend on the prime minister. If the Prime Minister delegates
to the foreign secretary some diplomatic topic, then all the other ministers and
the secretaries have to refer to the foreign secretary regarding this topic. Like-
wise, the Prime Minister can also remove a delegated topic again, for example
if there is a case of uncorrect behavior, taking her delegations ad interim. From
this moment, it will be the Prime Minister to which the other ministers have
to refer. Ministers also depend on each other. These institutional dependencies
among ministers is typically given by authorizations. For example, the minis-
ter of transport needs an authorization from the minister of infrastructures to
bridge a river, or the minister of public works needs funding from the minister
of finance to call for tenders to build the bridge. These examples show how a
minister M1 having a goal G1 depends on minister M2 to achieve it to have the
authorization.

The institutional powers of the Prime Minister can create new dependencies
among ministers. His institutional powers are that he can give a permission to
the other ministers to do something, for example the permission to be absent to
a council of ministers for serious reasons, and he can create obligations to other
ministers, for example, the Prime Minister can oblige the minister of transports
to present a document within a precise date. If the Prime Minister creates such
an obligation, then he may create also a dependency of the minister to other
ministers to obtain the document. Moreover, consider the example in which the
minister of Transports depends on the minister of Infrastructure to have the
authorization to start to build a new road. If the minister of Infrastructure is
under investigation for corruption and then he is removed from his role of minis-
ter, then the Prime Minister can take the office of the minister of Infrastructure
and so all his powers. In this case, the minister of Transports depends on the
Prime Minister to obtain his authorization to start building the road.

80 G. Boella, L. van der Torre, and S. Villata

3 Social Viewpoints for Dynamic Dependence Networks

In our model introduced in [3], four views are defined to describe a multiagent
system: the agent view, the power view, the dynamic dependence view and the
coalition view. While the agent view represented the agents of the systems, their
goals and the actions that they can perform to achieve these goals, the power
view, based on the concept of social power introduced by Castelfranchi [8], in-
troduced conditional goals, such as those goals that can be added by an agent to
another one. We defined the dynamic dependence view as an abstraction of the
power view, represented by a set of dependencies that can be added thanks to
existence of conditional goals. Abstracting from the dynamic dependence view,
we defined the coalition view representing a coalition as a set of dynamic depen-
dencies where each agent either creates a dependency or fulfills a goal.

In this model, the power to trigger a goal is distinguished from the power
to fulfill a goal. Due to the power to create goals, dependence relations are no
longer static, but they can be created by agents. We extended the dependence
networks developed by Conte and Sichman [11], following our previous results
in [7]. In the abstraction from the power view to a dynamic dependence network,
the creation of a dynamic dependency is based only on the power to create goals.
In other models, creating a dependency can also be due to creation of new skills
of agents. For formal details, see [3].

These four views can be applied to our running example since every minister
has a set of private goals, beliefs and abilities and, according to the actions he can
perform he has the power to see to a number of goals, his or of the other agents.
Conditional goals are represented in our scenario, for example, by the decision of
the Prime Minister to give to the minister of transports to present a document
within a precise date. In this case, the Prime Minister has the power to trigger
this particular goal. These conditional goals are the base of the change inside
the dependence networks, transforming it in a dynamic dependence network.

4 The Institutional View

A social structure is modeled as a collection of agents, playing roles regulated by
norms where “interactions are clearly identified and localized in the definition
of the role itself” [13]. The notion of role is notable in many fields of Artificial
Intelligence and, particularly, in multiagent systems where the role is viewed as
an instance to be adjoined to the entities which play the role.

The institutional view is defined as follows:

Definition 1 (Institutional view (IV)). IV =〈RL, IF, RG, X, igoals : RL→
2RG, iskills : RL → 2X , irules : 2X → 2IF 〉 consists of a set of role instances
RL, a set of institutional facts IF , a set of public goals attributed to roles, a
set of actions X, a function igoals that relates with each role the set of public
goals it is committed to, a function iskills that describes the actions each role
can perform, and a set of institutional rules irules that relates a set of actions
and the set of institutional facts they see to.

Changing Institutional Goals and Beliefs of Autonomous Agents 81

The institutional view assigns to each participant a set of public goals, describing
what he can do, e.g. authorize to built a bridge, and should do, e.g. be present
at a council of ministers. Our scenario allows to enforce the behavior of the
agents in the institution, for example, by blocking them from making statements
contradicting facts, or by performing forbidden (virtual) actions, such as e.g.
embezzle public money.

The social reality is provided with two distinct views, the material one, called
the agent view in [3], and the institutional one that aims to regulate the be-
haviour of the agents. In a multiagent system each agent has a set of facts and
goals that the other agents cannot change since agents are autonomous, formally
presented in the agent view. Thanks to its existence inside a social structure, to
each agent is added also new sets of facts and goals called the institutional ones
and that can be viewed and also modified by the other agents as regards their
institutional role.

The agents start with their sets of personal goals and beliefs and, only after
their insertion inside a particular social structure they enlarge their sets of goals
and beliefs. In particular, the set of goals is enlarged with new normative goals
that represent the responsibilities of the agent inside its social structure while
the set of beliefs is enlarged with new normative beliefs representing the set of
constitutive norms of the systems, norms based on the collective acceptance of
the society representable by means of an institutional ontology.

An Institutional Social Network is a social network representing set of indi-
viduals regulated by norms and containing the application of social roles to each
individual involved.

5 Institutional Dynamic Dependence Networks

The passage from one institutional view to another one can be viewed as a
dynamic social dependence network composed by all the social dependence net-
works coupled with the different institutional views. The main changes, that can
occur to the institutional view to make it dynamic and pass from an institutional
view to another one, are the addition or deletion of an igoal, of an iskill and
of an irule. These additions and deletions change the number of dependencies
and what agents are involved in them, passing from a social dependence network
to another one. This change can be represented by means of dynamic social de-
pendence networks. We extend the definition of dynamic dependence network
proposed in [3] with the possibility not only to add dependencies between agents
but also to remove them. Dynamic dependence networks are defined as follows:

Definition 2 (Dynamic Social Dependence Networks (DDN)). A dy-
namic social dependence network is a tuple 〈A, G, dyndep−, dyndep+〉 where:

– A is a set of agents and G is a set of goals.
– dyndep− : A× 2A × 2A → 22G

is a function that relates with each triple of a
agent and two sets of agents all the sets of goals in which the first depends on
the second, unless the third deletes the dependency. The static dependencies
are defined by dep(a, B) = dyndep−(a, B, ∅).

82 G. Boella, L. van der Torre, and S. Villata

– dyndep+ : A× 2A× 2A → 22G

is a function that relates with each triple of a
agent and two sets of agents all the sets of goals on which the first depends
on the second, if the third creates the dependency.

The following definition introduces measures for existing dependencies and
achieved goals. The overall value assigned to each dependence network is the
ratio among the total number of goals that can be achieved by the agents of the
network and the total number of dependencies among these agents.

Definition 3 (Measures)

– Number of goals that are achieved inside the network.
• nsg : |S| where S = {G1, G2, ..., Gn} ∀Gi=1,...,n ∈ dep(A1, A2, Gi)

– Number of dependencies inside the network.
• nd : |D| where D={dep1, dep2, ..., depn} ∀depi=1,...,n ∈ DN=〈A, G, depi〉.

– The goals-dependencies ratio is defined as:
• GD − ratio = nsg

nd with nsg ≤ nd.

Since a dynamic social dependence network is a superimposition of a number of
dependence networks, we define a ∆GD−ratio that expresses how much changes
the ratio between the number of achieved goals and the number of dependen-
cies among the different dependence networks composing a dynamic dependence
network.

Example 1 illustrates the addition of an irule and of an iskill by role instance
Pm (Prime Minister). In the first case, the Prime Minister adds a new irule, that
joins the institutional action ixN with the institutional goal pgN , that it allows
to achieve. Since the minister able to perform the institutional action ixN is the
minister of transport (Tm) and the two ministers, infrastructure (Im) and finance
(Fm), have the institutional goal pgN , there is the setting of two new dynamic
dependencies. In the second case, the Prime Minister adds a new institutional
iskill ixe to the minister of finance that allows the creation of a new dynamic
dependence in which the Prime Minister depends on the minister of finance to
achieve the institutional goal pg5, allowed by ixe.

Example 1. Consider the following additions:

– Role Pm adds to the institutional view a new irule: IV → IV + {irules ∪
{{ixN}, {pgN}}} where {pgN} ⊆ igoals(Im) and {pgN} ⊆ igoals(Fm) and
{ixN} ⊆ iskills(Tm) then dep2 = dep + dyndep+(Im, Tm, Pm, {pgN}) +
dyndep+(Fm, Tm, Pm, {pgN}) and nsg2 = nsg1 + 1 and nd2 = nd + 2;

– Role Pm adds to the institutional view also a new iskill: IV → IV +
{iskills ∪ {Fm, {ixe}}} where irules(K, {pg5}) and ability({pg5}) = {ixe}
such that {pg5} ⊆ K and {pg5} =⊆ igoals(Pm) then dep2 = dep+ dyndep+

(Pm, Fm, Pm, {pg5}) and nsg2 = nsg + 1 and nd2 = nd + 1;

Example 2 represents the application of the two additions on a dynamic social
dependence network, as shown in Figure 1.

Changing Institutional Goals and Beliefs of Autonomous Agents 83

Fig. 1. DDN of Example 2 where dotted arcs represent new dependencies

Example 2. Consider the following dynamic social dependence network:

1. Agents A = {T, I, F, L, P} and Goals G = {pg1, pg2, pg3, pg4, pg5, pgN};
2. – dep({I}, {P}) = {{pg1}}: agent I depends on agent P to achieve goal

{pg1};
– dep({T }, {I}) = {{pg4}}: agent T depends on agent I to achieve goal
{pg4};

– dep({L}, {I, F}) = {{pg2}}: agent L depends on agents I, F to achieve
goal {pg2};

– dep({T }, {P, L}) = {{pg4}}: agent T depends on agents P, L to achieve
goal {pg4};

– dep({I}, {F}) = {{pg1}}: agent I depends on agent F to achieve goal
{pg1};

– dep({F}, {P}) = {{pg3}}: agent F depends on agent P to achieve goal
{pg3};

– dyndep+({I, F}, {T }, {P}) = {{pgN}}: agents I, F depend on agent T
to achieve goal {pgN} if it is created by agent P ;

– dyndep+({P}, {F}, {P}) = {{pg5}}: agent P depends on agent F to
achieve goal {pg5} if it is created by agent P ;

3. The following measures show that, thanks to an increase of the number of
dependencies, also the number of achieved goals increases: GD− ratio1 = 4

8
and GD − ratio2 = 6

11 with nsg ≤ nd;

6 Related Work

Sierra [12] introduces Electronic Institutions (EIs) providing the virtual analogue
of human organizations in which agents, playing different organizational roles,
interact to accomplish individual and organizational goals. Roles are defined as
patterns of behavior and the purpose of their normative rules is to affect the
behavior of agents by imposing obligations or prohibitions. Another approach
to EIs is given by [4]. They propose the use of 3D Virtual Worlds where an
institution is represented as a building where the participants are represented
as avatars and once they enter the building their actions are validated against
the specified institutional rules. The problem of dynamic institutions is treated

84 G. Boella, L. van der Torre, and S. Villata

in [5] as an extension to EIs definition with the capability to decide in an au-
tonomous way how to answer dynamically to changing circumstances through
norm adaptation and changes in institutional agents.

As originally defined, dependence networks lack two ingredients: a normative
structure and a dynamic representation of networks of social structures. Nor-
mative multiagent systems provide agents with abilities to automatically devise
societies coordinating their behavior via obligations, norms and social laws [2].
The definition of power of Boella [1] can be directly applied to the description of
the institutional view. Also the ability to achieve goals can be directly defined in
terms of facts, skills and goals attributed to roles following the definition given
in [1]. The presented formal model can be extended with obligations, as in [2].
Dependencies due to norms like obligations and permissions can be modeled
by means of social dependence networks as in [7], however, institutional powers
cannot be captured by the existing dependence networks formalism, since they
introduce a dynamic element. By exercising a power, an agent transforms a so-
cial dependence structure into a new one by adding or removing dependencies at
the institutional level of the social structure. Thus, in our paper, power is seen as
the base of the change differently from what expresses by Jones and Sergot [10]
and Grossi [9].

7 Conclusions

In this paper we show how to model the dynamics of dependence networks
between agents due to institutional change, where the institutions are used to
enforce the global behaviour of the society and to assure that the global goals
of the society are met. Roughly, the behavior of the agents leads to a set of
institutional facts, leading to the addition and removal of responsibilities and
powers associated with the roles. This change of the institutional goals and beliefs
of agents constitutes the dynamic behavior of the institution. The challenge of
this paper is to explain how on the one hand, agents are autonomous and, thus,
their goals and beliefs cannot change, but on the other hand, the dependences
between agents can change in an institution. This challenge is twofold. First,
we explain how we can change their institutional goals and beliefs, that is, the
responsibilities and powers associated with their roles. Second, we explain how
institutional goals are distinguished from the private goals and beliefs.

The change of institutional goals and beliefs of the agents is explained, first,
by an informal example based on an hypothetical government. Second, it is
explained by additions and deletions of dependencies between the agents using
dependence networks developed by Sichman and Conte [11]. Moreover, we define
measures to analyze dependence networks. As illustrated by the government
scenario, the uniform combined model of role playing agents with private and
institutional powers and goals provides an intuitive representation for dynamics
in terms of modification of the institution, and the network measures are used
to analyze this dynamics.

Changing Institutional Goals and Beliefs of Autonomous Agents 85

The distinction between changing institutional goals and beliefs and changing
private goals and beliefs is based on the notion of institutional power. We intro-
duce the notion of institution based on the previously defined model of cognitive
agent of [3], associating to each agent a role instance with its institutional goals,
beliefs and capabilities. In [3] there is no definition of institution and the changes
are governed by power and are represented by conditional goals, so in this paper
we present an extension to the definition of dynamic dependence network of [3]
with also removal of dependencies. Due to the concept of institutional power, the
present paper shows the possibility to change the institutional goals and beliefs
of the agents maintaining agents’ autonomy.

References

1. Boella, G., Sauro, L., van der Torre, L.: From social power to social importance. In:
Web Intelligence and Agent Systems, pp. 393–404. IOS Press, Amsterdam (2007)

2. Boella, G., van der Torre, L.: Power in Norm Negotiation. In: Nguyen, N.T., Grzech,
A., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2007. LNCS, vol. 4496, pp. 436–
446. Springer, Heidelberg (2007)

3. Boella, G., van der Torre, L., Villata, S.: Social Viewpoints for Arguing about Coali-
tions. In: Proceedings of PRIMA 2008. LNCS, vol. 5357. Springer, Heidelberg (2008)

4. Bogdanovych, A., Esteva, M., Simoff, S., Sierra, C., Berger, H.: A Methodology
for Developing multiagent Systems as 3D Electronic Institutions. In: Luck, M.,
Padgham, L. (eds.) Agent-Oriented Software Engineering VIII. LNCS, vol. 4951,
pp. 103–117. Springer, Heidelberg (2008)

5. Bou, E., Lopez-Sanchez, M., Rodriguez-Aguilar, J.A.: Adaptation of Automatic
Electronic Institutions Through Norms and Institutional Agents. In: O’Hare,
G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS, vol. 4457,
pp. 300–319. Springer, Heidelberg (2007)

6. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents and
Multi-Agent Systems Journal 8, 203–236 (2004)

7. Caire, P., Villata, S., van der Torre, L., Boella, G.: Conviviality Masks in Role-
Based Institutions Multi-Agent Teleconferencing in Virtual Worlds. In: Proceedings
of AAMAS 2008, pp. 1265–1268 (2008)

8. Castelfranchi, C.: The micro-macro constitution of power. Protosociology 18, 208–
269 (2003)

9. Grossi, D.: Designing Invisible Handcuffs: Formal Investigations in Institutions
and Organizations for Multi-agent Systems, PhD Thesis, SIKS Dissertation Series
2007-16 (2007)

10. Jones, A.J.I., Sergot, M.: A Formal Characterization of Institutionalised Power.
Logic Journal of IGPL (2003)

11. Sichman, J.S., Conte, R.: Multi-agent dependence by dependence graphs. In: Pro-
ceedings of AAMAS 2002, pp. 483–490 (2002)

12. Sierra, C., Rodriguez-Aguilar, J.A., Noriega, P., Arcos, J.L., Esteva, M.: Engi-
neering multi-agent systems as electronic institutions. European Journal for the
Informatics Professional 5, 33–39 (2004)

13. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The
Gaia methodology. IEEE Transactions of Software Engineering and Methodol-
ogy 12, 317–370 (2003)

Reasoning about Constitutive Norms, Counts-As
Conditionals, Institutions, Deadlines and Violations

Guido Boella1, Jan Broersen2, and Leendert van der Torre3

1 University of Torino, Italy
2 University of Utrecht, The Netherlands

3 Computer Science and Communication, University of Luxembourg, Luxembourg

Abstract. Reasoning about norms and time is of central concern to the regula-
tion or control of the behavior of a multi-agent system. In earlier work we intro-
duce a representation of normative systems that distinguishes between norms and
the detached obligations of agents over time. In this paper we consider constitu-
tive norms and the detached counts-as conditionals and institutional facts in this
framework, we introduce deadlines in the regulative norms, and we consider the
corresponding role of violations. We focus on the reasoning tasks to determine
whether a constitutive or regulative norm is redundant in a normative system and
whether two normative systems are equivalent. We distinguish counts-as equiva-
lence, institutional equivalence, obligation equivalence and violation equivalence,
depending on whether we are interested in all normative consequences, or only a
subset of them. For the various notions of equivalence, we give sound and com-
plete characterizations.

1 Introduction and Running Example

Reasoning about norms and time is of central concern to institutions [1] for the regula-
tion or control of the behavior of a multiagent system [2, 3]. Institutions are normative
systems consisting of regulative norms like obligations, prohibitions and permissions,
and constitutive norms like “X counts as Y in context C” [4,5,6,7]. For example, in the
context of a selling contract, an electronic signature of agent John j counts as his sig-
nature, and his signature counts as the fact that the signer j owes the specified amount
of money to the seller Peter p. The constitutive norms are used to derive institutional
facts, also called intermediate concepts, that there is a signature, or that one agent owes
another agent money, which is then used to derive obligations and permissions using
regulative norms. For example, if agent j owes agent p money, then he has to pay him
before a deadline, and if j has paid p, then p has to give j a receipt before another
deadline.

Our running example is normative system NS = 〈CN, RN〉 with constitutive norms
CN={(esignjp counts–as signjp in contr), (signjp counts–as owejp in contr)} and reg-
ulative norms RN = {(owejp, payjp, d), (payjp, receiptpj , e)}, where the latter are read
as “if owejp then obligatory payjp before d”, and “if payjp then obligatory receiptpj be-
fore e”. The norms are used to label temporal structures like the one in Figure 1, which
must be read as follows. A circle visualizes a node of the tree and thus a moment in
time, and the words within the circle visualize the brute facts which hold at that node.

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 86–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reasoning about Constitutive Norms 87

��
��

�

��
��

��
����

��

��
����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
�

�
��

����

����
�

�
�
�	

�
�

�
�

�
�

�
�

��	

� �

�������
�

��

�
���

����

�

�

����

�

����

�

�

�
contr

esignjp

esignjp

contr

CA(esignjp, signjp), F (signjp)

CA(signjp, owejp), F (owejp)

V
d

O(payjp)

O(payjp) O(payjp)

payjp

O(receiptpj)
O(payjp)

O(receiptpj)

receiptpj

O(receiptpj)

V
d

O(receiptpj)

d

O(receiptpj)

O(payjp)

e

O(payjp)

O(receiptpj)

Fig. 1. Labeling of the temporal structure using the normative system NS = 〈CN, RN〉 with
CN = {(esignjp, signjp, contr), (signjp, owejp, contr)} and RN = {(owejp, payjp, d), (payjp,
receiptpj , e)}

An arrow from one node to another visualizes that the latter node is among the possible
future moments of the former. The root of the tree is visualized on the left hand side,
and four distinct nodes can be reached from it. In all these nodes we have or do not have
contr, and we have or do not have esignjp. For all these four nodes we can reach later
nodes in the paths, visualized on the right hand side of the figure, in which we no longer
have contr or esignjp, but the agents have performed actions payjp or receiptpj , or the
deadlines d and e expire. In that case it is possible that an obligation is violated (V).

Since there are various subtle choices to be made in the way institutional facts and
obligations are derived from a normative system, we study ways to reason about the
redundancy and equivalence of such systems. Makinson and van der Torre introduce
the input/output logic framework to reason about regulative norms and obligations, and
Broersen and van der Torre [8, 9] extend it to reason about obligations in time. How-
ever, normative systems contain more than just regulative norms, and in this paper we
therefore consider constitutive norms in this temporal framework. Just like regulative
norms are used to detach obligations, constitutive norms are used to detach counts-as
conditionals and institutional facts. In particular, we address the following questions,
not addressed in our earlier papers [8, 9] on this approach:

1. How to label temporal structures with counts-as conditionals and institutional facts,
given a set of constitutive norms?

2. When are constitutive norms redundant, and when are constitutive norm systems
equivalent?

88 G. Boella, J. Broersen, and L. van der Torre

3. How to extend the labeling of temporal structures with persistent regulative norms
with deadlines?

4. When are persistent regulative norms with deadlines redundant, and when are reg-
ulative norm systems equivalent?

5. How to label temporal structures with violations, and how to define violation re-
dundancy and equivalence?

As a methodology we use input/output logic to represent both regulative and con-
stitutive norms, due to their common conditional character, and we introduce two dis-
tinctions: on the one hand, we distinguish between regulative norms and obligations,
and, on the other hand, between constitutive norms and counts-as conditionals. In this
way we are able to face the philosophical problem known as Jorgenson’s dilemma [10],
which roughly says that a proper logic of norms is impossible because norms do not
have truth values. Most formal systems reasoning about norms and time [11, 12, 13, 14,
15,16,17,10,18,19] are restricted to obligations, prohibitions and permissions only, and
do not consider the norms explicitly. The relation between our approach to normative
systems and modal logics like deontic logic and conditional logic is not discussed in
the present paper. Also it is beyond the scope of this paper to discuss the role of consti-
tutive norms in creating or deleting other constitutive or regulative norms, for example
to define contracts, as discussed in [20].

Despite the practical motivation, our formal approach also touches a long stand-
ing philosophical debate on the interplay between constitutive and regulative norms,
because all earlier common frameworks to study this interplay do not consider the in-
fluence of time. Searle first claimed that constitutive rules are necessary to define insti-
tutions, and Ruiter [21] emphasizes the necessity and interplay of both kinds of rules.
Ross [22] argues in the famous tû-tû example that intermediate concepts created by
constitutive rules are superfluous, in the sense that the same deontic conclusions can
be obtained through inferences directly connecting brute facts and deontic qualifica-
tions. Anderson [23] argues, instead, that regulative rules are not necessary and that
they can be defined in terms of violations, and Grossi [5] argues that regulative rules
can be defined in terms of constitutive rules. Finally, Boella and van der Torre [24] ar-
gue that regulative rules are necessary also in the definition of constitutive rules, using
an example from procedural law.

The layout of this paper is as follows. In Section 2 we consider constitutive norms
and institutional facts. In Section 3 we consider regulative norms and obligations that
are preserved until they are obeyed. In Section 4 we consider violation labelings, and
corresponding notions of violation redundancy and violation equivalence.

2 Institutional Equivalence of Constitutive Normative Systems

To formalize the example, we start with the definitions for ‘tree’ and ‘normative sys-
tem’. The nodes of a tree represent moments in time, and we say that φ ∈ H(n) if brute
fact φ holds at node n of the tree. For example, esignjp ∈ H(n) represents that there
is an electronic signature of agent j at moment n. We assume that each node is com-
plete, in the sense that each brute fact is either true or false. In the figure we represent
the brute facts that hold in the circle, and all brute facts not represented are therefore

Reasoning about Constitutive Norms 89

assumed not to hold. Moreover, we assume that we can use propositional connectives
to talk about the brute facts. So, for example, we can say that at some moment in time
“there is an electronic signature of agent j and there is a selling contract”. To keep the
figure readable, we do not explicitly represent any of these logical consequences in the
figure. These two assumptions imply that H(n) is a maximally consistent set of formu-
las of a propositional logic. Maximal consistent sets satisfy exactly all the properties
we need, like, if φ∨ψ ∈ H(n) then φ ∈ H(n) or ψ ∈ H(n), and closure under logical
consequence.

Definition 1 (Tree). Let LP be a propositional language built on a set of brute facts P ,
Let LI be a propositional language built from a set of institutional facts I , and let L
be a propositional language built from P ∪ I . A tree is a tuple T = 〈N, E, H〉 where
N is a set of nodes, E ⊆ N ×N is a set of edges obeying the tree properties, and
H : N → 2LP is a labeling function assigning to each node n a maximally consistent
set of propositional formulas from LP .

Constitutive norms like (esignjp counts–as signjp in contr) are used to define institu-
tional facts in terms of brute facts and other institutional facts.

Definition 2 (Constitutive norms). A constitutive norm “x counts–as y in c” is repre-
sented by a formula “fact” x ∈ L, a formula “institutional fact” y ∈ I and a formula
“context” c ∈ LP , and written as (x counts–as y in c). A constitutive normative system
is a set of norms CN = {(x1 counts–as y1 in c1), . . . , (xn counts–as yn in cn)}.
In our approach, constitutive norms are used to detach counts-as conditionals and insti-
tutional facts at each node of a tree. We call it the operational semantics for the norms,
because the way we label the temporal structure determines the meaning of the con-
stitutive norms. The counts-as conditionals are pairs of a propositional formula and an
institutional fact, and the institutional facts are an institutional labeling of the temporal
structure. We assume that the institutional facts at a node are again a maximal consistent
set, representing the ideal alternative for the node, and this logical closure is again not
visualized in Figure 1.

Definition 3 (Constitutive norm semantics). A counts-as labeling is a function
CA : N → 2L×I and an institutional labeling is a function F : N → 2I . The constitu-
tive norm semantics of a normative system CN is the unique counts-as and institutional
labeling CA : N → 2L×I and F : N → 2I such that for each node n, CA(n) and F (n)
are the minimal sets such that:

1. for all norms (i, o, c) and all nodes n, if c ∈ H(n), then (i, o) ∈ CA(n).
2. if (i, o) ∈ CA(n) and i is a propositional consequence of i′, then (i′, o) ∈ CA(n).
3. for all counts-as conditionals (i, o) ∈ CA(n) and all nodes n, if i is a propositional

consequence of H(n) ∪ F (n), then o ∈ F (n).
4. if ϕ is a propositional consequence of F (n) then ϕ ∈ F (n).

The following example illustrates how the constitutive norms of the running example
are used to label the branching time structure. We distinguish between so-called factual
and institutional detachment. The former is based on a match between the condition of
the norm and the facts, and the latter kind is based on a match between the condition
and the institutional facts. For institutional facts, we want both kinds of detachment.

90 G. Boella, J. Broersen, and L. van der Torre

Example 1. The counts-as conditionals (esignjp, signjp) ∈ CA(n) and (signjp, owejp)
∈ CA(n) are detached in all nodes n with contr ∈ H(n), also where esignjp or signjp

does not hold. In the figure, we represent the counts-as conditional (esignjp, signjp) ∈
CA(n) by writing CA(esignjp, signjp) next to node n, and so on. CA(esignjp, signjp)
without esignjp can be read as a counterfactual: if esignjp would have been true, then
F (signjp) would have been the case. The institutional fact F (signjp) is detached in all
esignjp ∧ contr nodes, and the institutional fact F (owejp) is detached in all contr nodes
where also F (signjp) is detached. None of the counts-as conditionals or institutional
facts persists in time.

We now define how to reason about norms, institutions and time. We define equiva-
lence of normative systems as equivalence of the labeling they give rise to, and a norm
is redundant when it does not affect the labeling of the temporal structure. For many
applications, we are interested only in the institutional facts, not in the counts-as con-
ditionals which can be derived from a constitutive normative system. This leads to two
notions of redundancy.

Definition 4 (Equivalence and redundancy). Two constitutive normative systems
CN1 and CN2 are counts-as (institutionally) equivalent if and only if for each temporal
structure T , the counts-as (institutional) labeling by CN1 is identical to the counts-as
(institutional) labeling by CN2. A norm (i, o, c) ∈ CN is constitutively (institutionally)
redundant in constitutive normative system CN if and only if CN and CN \ {(i, o, c)}
are counts-as (institutionally) equivalent.

The following result characterizes all properties which hold for constitutive normative
systems. We do not detail the proofs of this and following theorems.

Theorem 1 (Redundant constitutive norms). In a constitutive normative system CN,
a constitutive norm (x counts–as y in c) ∈ CN is counts-as redundant if we can derive
it from CN \ {(x counts–as y in c)} using replacement of logical equivalents in input
and context, together with the following rules:

(x1 counts–as y in c1)
(x1 ∧ x2 counts–as y in c1 ∧ c2)

SIC
(x counts–as y in c1)(x counts–as y in c2)

(x counts–as y in c1 ∨ c2)
ORC

(x counts–as y in c) ∈ CN is institutionally redundant when we can derive it from
CN \ {(x counts–as y in c)} with the above rules, together with the following ones:

(x1 counts–as y in c)(x2 counts–as y ∈ c)
(x1 ∨ x2 counts–as y in c)

ORX

(x1 ∧ x2 counts–as y in c)
(x1 counts–as y in c ∧ i2)

I2C
(x counts–as y in c1 ∧ c2)

(x ∧ c2, y, c1)
C2Y

(x counts–as y1 in c), (x ∧ y1 counts–as y2 in c)
(x counts–as y2 in c)

CT
(x counts–as y1 ∧ y2 in d)

(x counts–as y1 in d)
WY

Reasoning about normative systems is illustrated in the running example.

Reasoning about Constitutive Norms 91

Example 2 (Continued from Example 1). Let

CN = {(esignjp counts–as signjp in contr), (signjp counts–as owejp in contr)}

The norm (esignjp counts–as owejp in contr) is institutionally redundant in normative
system

CN′ = CN ∪ {(esignjp counts–as owejp in contr)}
due to institutional detachment represented by inference rule CT. However, it is not
counts-as redundant, since the counts-as rule (esignjp counts–as owejp) cannot be de-
tached using the two rules of our running example.

Proposition 1 (Monotony of labeling functions). A labeling function Lab : N → S,
with N a set of nodes in a temporal structure T , and S either a set of counts-as pairs, or
any other set of labels build from propositional formulas, is monotonic if and only if for
each node n, the labels Lab(n) in normative system S are a subset of the labels Lab′(n)
in any normative system S′ with S ⊆ S′. The counts-as and institutional labeling are
monotonic.

The following proposition follows from monotony of the counts-as labeling function.

Proposition 2. Two constitutive normative systems CN1 and CN2 are counts-as (in-
stitutionally) equivalent if and only if each norm of CN1 is counts-as (institutionally)
redundant when added to CN2, and vice versa.

Example 3 (Continued from Example 2). The two normative systems

CN = {(esignjp counts–as signjp in contr), (signjp counts–as owejp in contr)}

and
CN′ = CN ∪ {(esignjp counts–as owejp in contr)}

are institutionally equivalent.

3 Obligation Equivalence of Regulative Norms with Deadlines

It has been argued [25] that for temporal regulative norms, deadlines are of essential im-
portance. Therefore, for regulative normative systems we extend the norms with dead-
lines, and generalize the persistency semantics introduced in [8] in order to deal with
these deadlines. Extensions with, for example, explicit sanctions, as well as other kinds
of norms like permissive and procedural norms, are left for further research. Follow-
ing conventions in input/output logic [26, 27], in [8] we write a conditional norm “if i,
then o is obligatory” as a pair of propositional formulas (i, o). Similarly, in this paper,
we write a conditional norm “if i, then o is obligatory before deadline d” as a triple of
propositional formulas (i, o, d).

Consequently, since in this paper we focus on temporal reasoning with norms, we do
not consider contrary-to-duty norms stating what should hold in sub-ideal nodes [28,29]
or dilemmas stating various optimal alternatives for a node [30]. For a discussion on the
various problems with such norms and approaches such as priorities to deal with these
problems, see [31].

92 G. Boella, J. Broersen, and L. van der Torre

Example 4 (Continued). Consider again the temporal structure in Figure 1. From the
root node visualized on the left side of the figure we can access only one node in which
“John owes Peter $1000”, F (owejp). From this node, we can reach two other nodes,
one in which “John pays Peter $1000”, payjp, and one in which it does not happens.
The norms are “if owexy , then obligatory payxy before d” (owexy, payxy, d), and “if
payxy, then obligatory receiptyx before e” (payxy, receiptyx, e). Here x and y are vari-
ables ranging over the set of agents, in the sense that each norm is treated as a set of
propositions based norms, for each instance of the agent variables.

As discussed in [8, 17], we do not want to have iterated or deontic detachment, in the
sense that Peter is not obliged to give John a receipt until he has given him the money.
Moreover, in contrast to the constitutive norm semantics, if John pays Peter, then Peter
has to give John the receipt directly or at some point in the future.

Example 5 (Continued). Consider the desired labeling of the temporal structure in
Figure 1. In the circumstance that John owes Peter $1000 but he has not paid him yet,
Peter does not have the obligation to write a receipt (see bottom path). That obligation
arises only when John fulfils his obligation by paying Peter (top path). Consequently,
we have factual detachment without iterated or deontic detachment. Moreover, for each
norm, we have that if the condition is true in a node, then the obligation holds for the
node itself. Moreover, if the obligation is not fulfilled, then it also holds for all successor
nodes (see, e.g., bottom path).

In addition to factual detachment and persistence, we assume that the obligatory for-
mulas at a node are a deductively closed set. This logical closure is not visualized in
Figure 1, and it implies that we do not consider contrary-to-duty norms.

Definition 5 (Persistent norm semantics). The persistent norm semantics of a norma-
tive system S is the unique obligation labeling O : N → 2L such that for each node n,
O(n) is the minimal set such that:

1. for all norms (i, o, d), nodes n1, and paths (n1, n2, . . . , nm) with m ≥ 1, if i is a
consequence of H(n1) ∪ F (n1) and o ∨ d is not a consequence of
H(nk) ∪ F (nk) for 1 ≤ k ≤ m− 1, then o ∈ O(nm).

2. if ϕ is a propositional consequence of O(n) then ϕ ∈ O(n).

We might have used more complicated labels. For example, in [9] we use dyadic oblig-
ations to model obligations which can be fulfilled before the antecedent has become
true. In our running example, Peter could give the receipt to John before he receives the
money (not illustrated in the figure). Moreover, we could also label the temporal struc-
ture with deadline obligations like O(p ≤ d), as studied in [25]. However, that would
be less in line with the central paradigm in this paper, where the semantics of norms
is defined in terms of the obligations they give rise to. Deadlines in the norms then
are interpreted as intervals in the temporal models in which the corresponding obliga-
tion holds. It would thus be superfluous to label the temporal structures with deadline
obligations. So, although monadic modal logic has been considered too simple for for-
malizing deontic reasoning in case of implicit normative systems, here monadic modal
logic seems sufficient.

Reasoning about Constitutive Norms 93

Redundancy and equivalence for persistent obligations is analogous to reasoning
about constitutive norms in Definition 4.

Definition 6 (Obligation equivalence and redundancy). Two regulative normative
systems RN1 and RN2 are obligation equivalent if and only if for each temporal struc-
ture T , the obligation labeling by RN1 is identical to the obligation labeling by RN2. In
regulative normative system RN, a norm (i, o, d) ∈ RN is obligation redundant if and
only if RN is obligation equivalent to RN \ {(i, o, d)}.

Without proof, we give the following result.

Theorem 2 (Redundant regulative norms). In a regulative normative system RN, a
regulative norm (i, o, d) ∈ RN is obligation redundant under the persistence semantics
when we can derive it from RN \ {(i, o, d)} using replacement of logical equivalents in
input, output and deadline, together with the following rules:

(⊥,⊥, �)
⊥

(�, �, �)
� (i1, o, d)

(i1 ∧ i2, o, d)
SI

(i, o1 ∧ o2, d)
(i, o1, d)

WO

(i1, o, d)(i2, o, d)
(i1 ∨ i2, o, d)

ORI
(i, o, d1 ∧ d2)

(i, o, d1)
WD

(i, o, d)
(i, o, d ∧ o)

OSD

(i, o1, �), (i, o2, �)
(i, o1 ∧ o2, i)

AND�
(i, o, p)(p, o, q)

(i, o, q)
TRD

We do not have redundancy of transitivity because we no longer have deontic de-
tachment. The conjunction rule AND holds only for obligations that do not persist in
time. It does not even hold for obligations sharing the same deadline, as illustrated by
Example 6.

Example 6 (Continued). Consider the regulative normative systems

RN1 = {(owexy, payxy ∧ receiptyx, d)}

RN2 = {(owexy, payxy, d), (owexy, receiptyx, d)}

RN3 = {(owexy, payxy, d), (owexy, payxy → receiptyx, d)}

If n |= owejp ∧ payjp ∧ ¬receiptpj , then we have O(n) is the consequence set of
payjp ∧ receiptpj . Hence, at node n we cannot discriminate among the three norma-
tive systems. However, we have for any successor node of n that using RN1 we have
payjp ∧ receiptpj ∈ O(m), because the obligation for payjp ∧ receiptpj persists, us-
ing RN2 we have only receiptpj ∈ O(m), because we have that only the obligation
for receiptpj persists, and using RN3, we have only payjp → receiptpj ∈ O(m), be-
cause only the obligation for payjp → receiptpj persists. The example also illustrates
that the three normative systems RN1, RN2 and RN3 are not equivalent.

94 G. Boella, J. Broersen, and L. van der Torre

4 Violation Equivalence of Regulative Norms with Deadlines

Deadlines are used with persistent norms to determine whether the norm is violated.
For instance, in Figure 1 the obligation O(payjp) persists until d, without visiting a
state where payjp, which results in a violation. Below we define violation equivalence
for regulative norms. First we define a violation labeling of temporal structures.

Definition 7 (Violation semantics). A violation labeling is a set V ⊆ N such that
nm ∈ V if and only if there is a norm (i, o, d), a node n1 and a path (n1, n2, . . . , nm)
with m ≥ 1, such that i is a consequence of H(n1) ∪ F (n1) and o ∨ d is not a con-
sequence of H(nk) ∪ F (nk) for 1 ≤ k ≤ m − 1, and ¬o ∧ d is a consequence of
H(nm) ∪ F (nm).

Violation equivalence and redundancy for persistent obligations are defined in the same
way as for regulative norms in Definition 6. Even if we are interested in violations only,
and thus not in the obligation, we can distinguish the following two notions of violation
equivalence. Local violation equivalence distinguishes between violations at different
nodes, while global violation equivalence identifies any two violations on a single path.

Definition 8 (Violation equivalence). Two regulative normative systems RN1 and RN2
are locally violation equivalent if and only if for each temporal structure T , the violation
labeling by RN1 is identical to the violation labeling by RN2. Two regulative normative
systems RN1 and RN2 are globally violation equivalent if and only if for each temporal
structure T , for each path σ in T , there is an n ∈ σ such that n ∈ V for RN1 if and
only if there is n ∈ σ such that n ∈ V for RN2.

Definition 9 (Violation redundancy). In regulative normative system RN, a norm
(i, o, d) ∈ RN is (locally / globally) violation redundant if and only if RN is (locally
/ globally) violation equivalent to RN \ {(i, o, d)}.

Theorem 2 says, among other things, that deadlines can be weakened. That is, if we
weaken the deadline of a regulative norm from d1 ∧ d2 to d1, we get a redundant norm
(see [12] for similar properties in a modal approach to deontic deadlines). However,
Theorem 3 shows that if we identify a norm with the nodes in which it is violated,
which seems a reasonable alternative way of viewing norms, then this property does
no longer hold. In general, weaker deadlines may be satisfied sooner, which means that
violations also can occur sooner. So there is a difference between obligation equivalence
of regulative normative systems and violation equivalence.

Theorem 3 (Violation redundancy regulative norms). In a regulative normative sys-
tem RN, a regulative norm (i, o, d) ∈ RN is locally violation redundant if we can derive
it from RN \ {(i, o, d))} using replacement of logical equivalents in input, output and
deadline, together with the following rules:

(⊥, ⊥, �)
⊥

(i, o, d ∧ o)
OD

(i1, o, d)
(i1 ∧ i2, o, d)

SI
(i, o1 ∧ o2, d)

(i, o1, d)
WO

(i1 ∧ i2 ∧ i3, o, i1 ∧ i2)
(i1 ∧ i2 ∧ i3, o, i1)

RWD
(i1 ∧ i2 ∧ i3, o, i1)

(i1 ∧ i2 ∧ i3, o, i1 ∧ i2)
RSD

Reasoning about Constitutive Norms 95

(i1, o, d)(i2, o, d)
(i1 ∨ i2, o, d)

OR
(i, o1, �)(i, o2, �)

(i, o1 ∧ o2, i)
AND�

(i, o, d1)(i, o, d2)
(i, o, d1 ∨ d2)

ORD

For global violation redundancy we get, in addition:

(i, ¬i, i)
(i, o, d)

V

5 Summary

Reasoning about norms and time is of central concern to the regulation of multiagent
system behavior [2, 3]. In particular, for the study of social norms emerging in soci-
eties which aim at enforcing desirable group behavior, for the design of legal norms to
meet institutional goals in electronic institutions, for the design of organizational norms
to structure organizations and regulate agents playing a role in the organization, and
for the study of norms in contracting in electronic commerce. Broersen and van der
Torre [8, 9] show that the distinction between norms and obligations leads to a sim-
ple and therefore practical way to reason about norms, obligations of agents and time,
and they illustrate the approach by discussing three ways to relate norms and oblig-
ations over time. Also they show how these three can be characterized, generalizing
the non-temporal input/output logic framework. The approach of Broersen and van der
Torre [8, 9] to reasoning about norms, obligations, time and agents takes three steps.

1. They assume a branching temporal structure representing how propositions change
over time, where the branches represent either uncertainty or alternative actions of
the agents. Such a temporal structure can be generated using a formal language,
like, for example, in model checkers such as Mocha [32] or action logics such as
the causal calculator [33].

2. They use an algorithm that, given the input of the branching temporal structure and
a set of norms, produces as output a labeling of the temporal structure with obliga-
tions. The algorithm determines the meaning of the norms, and it may therefore be
considered an operational semantics of the norms. They give formal definitions for
the possible labelings, enabling them to say when norms are equivalent or redun-
dant.

3. Two normative systems are equivalent, when they lead to the same labeling. A
norm is redundant in a normative system, if removing the norm from the normative
system leads to an equivalent normative system.

Broersen and van der Torre [8, 9] extend the input/output logic framework to reason
about regulative norms and obligations in time. In the present paper we consider consti-
tutive norms in this temporal framework. Just like regulative norms are used to detach
obligations, constitutive norms are used to detach counts-as conditionals and institu-
tional facts. Whereas Broersen and van der Torre [8, 9] show that the approach leads
to a simple way to reason about norms and obligations in time, this paper shows that
the new approach leads to a detailed study of various kinds of equivalence of normative
systems.

96 G. Boella, J. Broersen, and L. van der Torre

In particular, we obtain the following results. Given a set of constitutive norms, we
label temporal structures with counts-as conditionals and institutional facts, by using
both factual and institutional detachment. We distinguish between counts-as and insti-
tutional equivalence of two constitutive normative systems, and we show that the latter
leads to many logical properties. We show that a simple extension of the persistence
condition leads to the extension of the labeling of temporal structures with persistent
regulative norms with deadlines. Instead of persisting until the obligation is fulfilled, an
obligation persists until the obligation is fulfilled or the deadline is reached. The oblig-
ations themselves do not refer to the deadline explicitly. Moreover, we label temporal
structures with violations by checking whether the obligations are fulfilled at the dead-
line. We distinguish local and global violation redundancy and equivalence, depending
on whether the moment of violation is taken into account, and show that the logics of
obligation redundancy and the two kinds of violation redundancy are subtly different.
For example, with obligation redundancy we have weakening of the deadline, which
does not hold for violation redundancy.

References

1. Arcos, J., Esteva, M., Noriega, P., Rodrı́guez, J., Sierra, C.: Engineering open environ-
ments with electronic institutions. Journal on Engineering Applications of Artificial Intel-
ligence 18(2), 191–204 (2005)

2. Boella, G., van der Torre, L., Verhagen, H. (eds.): Computational and Mathematical Organi-
zation Theory. NorMAS 2005, vol. 12(2-3) (2006)

3. Boella, G., van der Torre, L., Verhagen, H. (eds.) Normative Multi-agent systems. In: Procs.
of NorMAS 2007, Dagstuhl Seminar proceedings 07122 (2007)

4. Gaudou, B., Longin, D., Lorini, E., Tummolini, L.: Anchoring institutions in agents’ at-
titudes: Towards a logical framework for autonomous multi-agent systems. In: Procs. of
AAMAS 2008 (2008)

5. Grossi, D.: Pushing Anderson’s envelope: The modal logic of ascription. In: van der Meyden,
R., van der Torre, L. (eds.) DEON 2008. LNCS, vol. 5076, pp. 263–277. Springer, Heidelberg
(2008)

6. Jones, A., Sergot, M.: A formal characterisation of institutionalised power. Journal of IGPL 3,
427–443 (1996)

7. Searle, J.: Speech Acts: an Essay in the Philosophy of Language. Cambridge University
Press, Cambridge (1969)

8. Broersen, J., van der Torre, L.: Reasoning about norms, obligations, time and agents. In:
Procs. of PRIMA 2007. LNCS. Springer, Heidelberg (to appear)

9. Broersen, J., van der Torre, L.: Conditional norms and dyadic obligations in time. In: Procs.
of 18th European Conference on Artificial Intelligence (ECAI 2008) (2008)

10. Makinson, D.: On a fundamental problem of deontic logic. In: McNamara, P., Prakken, H.
(eds.) Norms, Logics and Information Systems. New Studies on Deontic Logic and Computer
Science, pp. 29–54. IOS (1999)

11. Alchourrón, C., Bulygin, E.: Normative Systems. Springer, Wien (1971)
12. Broersen, J.: Strategic deontic temporal logic as a reduction to ATL, with an application to

chisholm’s scenario. In: Goble, L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS, vol. 4048, pp.
53–68. Springer, Heidelberg (2006)

13. Broersen, J., Brunel, J.: What I fail to do today, I have to do tomorrow: a logical study of the
propagation of obligations. In: Procs. of CLIMA VIII. LNCS, vol. 5056, pp. 82–99. Springer,
Heidelberg (2008)

Reasoning about Constitutive Norms 97

14. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic.
In: ICAIL 2005: Proceedings of the 10th international conference on Artificial intelligence
and law, pp. 25–34. ACM, New York (2005)

15. Horty, J.: Agency and Deontic Logic. Oxford University Press, Oxford (2001)
16. Loewer, B.: Dyadic deontic detachment. Synthese 54, 295–318 (1983)
17. Makinson, D.: Five faces of minimality. Studia Logica 52, 339–379 (1993)
18. Meyer, J.J.C.: A different approach to deontic logic: Deontic logic viewed as a variant of

dynamic logic. Notre Dame Journal of Formal Logic 29(1), 109–136 (1988)
19. van Eck, J.: A system of temporally relative modal and deontic predicate logic and its philo-

sophical applications. Logique et Analyse 25, 339–381 (1982)
20. Boella, G., van der Torre, L.: A game theoretic approach to contracts in multiagent sys-

tems. IEEE Transactions on Systems, Man and Cybernetics - Part C: Applications and Re-
views 36(1), 68–79 (2006)

21. Ruiter, D.: A basic classification of legal institutions. Ratio Juris 10(4), 357–371 (1997)
22. Ross, A.: Tû-tû. Harvard Law Review 70(5), 812–825 (1957)
23. Anderson, A.: A reduction of deontic logic to alethic modal logic. Mind 67, 100–103 (1958)
24. Boella, G., van der Torre, L.: Substantive and procedural norms in normative multiagent

systems. Journal of Applied Logic 6(2), 152–171 (2008)
25. Broersen, J.: On the logic of being motivated to achieve ρ, before δ. In: Alferes, J.J., Leite,

J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 334–346. Springer, Heidelberg (2004)
26. Makinson, D., van der Torre, L.: Input-output logics. Journal of Philosophical Logic 29(4),

383–408 (2000)
27. Makinson, D., van der Torre, L.: Constraints for input-output logics. Journal of Philosophical

Logic 30(2), 155–185 (2001)
28. Chisholm, R.: Contrary-to-duty imperatives and deontic logic. Analyse 24, 33–36 (1963)
29. Forrester, J.: Gentle murder, or the adverbial samaritan. The Journal of Philosophy 81, 193–

197 (1984)
30. van Fraassen, B.: Values and the hearts command. The Journal of Philosophy (1973)
31. Hansen, J., Pigozzi, G., van der Torre, L.: Ten philosophical problems in deontic logic. In:

Normative Multi-agent systems, Procs. of NorMAS 2007. Dagstuhl Seminar proceedings
07122 (2007)

32. Alur, R., Henzinger, T., Mang, F.Y.C., Qadeer, S., Rajamani, S., Tasiran, S.: Mocha: Modu-
larity in model checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 521–525.
Springer, Heidelberg (1998)

33. Artikis, A., Sergot, M., Pitt, J.: Specifying electronic societies with the causal calculator.
In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 1–15.
Springer, Heidelberg (2003)

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 98–108, 2008.
© Springer-Verlag Berlin Heidelberg 2008

When to Use a Multi-Agent System?

Paul Bogg1, Ghassan Beydoun2, and Graham Low1

1 University of New South Wales
{paulb,g.low}@unsw.edu.au

2 University of Wollongong
beydoun@uow.edu.au

Abstract. The decision of which development approach to adopt (e.g. tradi-
tional, object oriented, agent oriented) is often taken after identifying the spe-
cific features of the problem. If agent oriented software engineering (AOSE) is
to be taken seriously as a software engineering paradigm, then a clearly identifi-
able set of criteria of when to apply it, as distinguished from other alternatives
such as object-oriented practices, is necessary. The paper is part of an effort to
determine when is best to adopt a Multi Agent System approach, identifying a
number of critical factors to include in a decision framework.

1 Introduction

Agents are highly autonomous, situated and interactive software components. They
autonomously sense their environment and respond accordingly. A Multi Agent Sys-
tem (MAS) is a collection of interacting agents which are highly autonomous, situated
and interactive software components. They autonomously sense their environment
and respond accordingly. Coordination and cooperation between agents that possess
diverse knowledge and capabilities facilitate the achievement of global goals that
cannot be otherwise achieved by a single agent working in isolation [1]. MASs have
been shown to be highly appropriate for the engineering of open, distributed or het-
erogeneous systems [2-4]. While many AOSE methodologies exist with each focusing
on a specific class of problems (e.g. MaSE [5], GAIA [6], PROMETHEUS [7] and
TROPOS [8]), a clear and established set of criteria for determining if, and when, an
agent approach should be used remains absent. This no doubt has contributed to the
delay in the much anticipated adoption of MAS as a preferred development approach
in many medium to large-scale projects.

This paper is a part of our ongoing research to remove barriers to the successful
adoption of AOSE. We present a preliminary multi-staged approach to identifying a
set of criteria to be included in a decision framework that will assist in determining if,
and to what degree, a MAS is suitable to solving a particular problem.

2 Related Work

Deciding if a MAS approach should be used to solve a particular problem requires
identifying its suitability and estimating its relative cost (versus alternative approaches)

 When to Use a Multi-Agent System? 99

in terms of money, expertise and time. An answer to the question “Should one use a
MAS approach to solve this particular problem?” is based on an acceptable degree of
suitability combined with an acceptable level of cost. Not to understate the importance
of a cost assessment, the primary focus in this paper is in defining a measure of suit-
ability defined as the extent to which the properties of a MAS are appropriate to the
successful design and implementation of the application system.

MASs have originally been proposed as a new software-based solution providing
advantages over existing alternatives for a particular family of problems [1]. In
Wooldridge [1], the following four criteria have been identified to establish the suit-
ability of a MAS:

• When the environment is open or at least highly dynamic, uncertain or complex;
• When agents are a natural metaphor;
• When data, control or expertise are distributed; and/or
• When extending legacy systems.

These criteria provide some guidance but are open to interpretation particularly for
problems not previously addressed by a MAS solution. For instance, it is left to the
designer to decide when agents are a natural metaphor. Two other similar sets of
criteria have been proposed by De Wolf and Holvoet [9] and EURESCOM [10] re-
spectively. The De Wolf and Holvoet’s [9] criteria are:

• When there is a need to maintain overall system properties (e.g. self-optimising,
self-healing, self-configuring);

• When there is decentralised or distributed information availability (e.g. in com-
petitive situations, or communication failure somewhere); and/or

• When there is high dynamics and frequent changes (e.g. robustness is required,
adaptability to environment changes).

EURESCOM [10]’s criteria are:

• When complex/diverse types of communication are required;
• When the system must perform well in situations where it is not practical/ possi-

ble to specify its behaviour on a case-by-case basis;
• When negotiation, cooperation, and competition between entities is involved;
• When the system must act autonomously; and/or
• When high modularity is required (for when the system is expected to change).

Both preceding sets of criteria further help to identify when an agent-based solu-
tion may be appropriate, but they are still quite general. They do not offer clear guide-
lines as to when MASs may be the preferable approach. For instance the criteria
“when there is decentralised or distributed information availability” can actually be
addressed by non agent-oriented system implementations. By taking account of the
existing wide range of MAS applications and applying a methodical analysis of their
common features, we provide two detailed sets of features detailing features of prob-
lems suited for MAS and features of solutions that can be expected from a MAS solu-
tion. This raises further questions: to what extent is a MAS suited to address the
features of a particular problem? Are some features more important in determining
this suitability? And finally, how can one validate the appropriateness of any defined

100 P. Bogg, G. Beydoun, and G. Low

set of features? To provide answers for these questions we construct a framework that
can be applied to a problem instance to assess the suitability of a MAS solution and
discuss ongoing work.

3 MAS Features for Determining Suitability

In this section, we lay the foundations to construct a framework to assess whether a
MAS is an appropriate solution for a given problem. We first overview properties of
agents and MAS. These properties we know that any MAS can be designed to have.
After overviewing 25 existing MAS applications from the literature, we establish a
comprehensive set of features that affect the decision of whether or not to adopt an
agent-oriented approach and we relate these features to the known properties of MAS
and agents.

Individual agents show varying levels of autonomy, social ability, reactivity and
pro-activity and/or reasoning capabilities. Autonomy is the independent control that an
agent has over tasks performed as well as its control over the acquisition of inputs and
resources required for its tasks. Reasoning capabilities is the ability that the agent has
to identify reasons for beliefs, conclusions or performing tasks. Social ability is the
ability that an agent has to interact with other agents or other components of the envi-
ronment. A MAS solution has system-level properties that result from the interactions
between the individual agents in the system. Self-organisation as a key system-level
property of MASs which is a process allowing the system to change its internal or-
ganisation to adapt to changes in its goals and the environment without explicit exter-
nal control [11]. Various characteristics of self-organising systems are (adapted from
[11]): decentralised control, self-maintenance, adaptivity, and convergence. Decen-
tralised control arises in the absence of a central authority when the system operation
is governed by the interactions between individual agents. Self-maintenance is where
a system has the capacity to reproduce or repair itself. Adaptivity is the capability of
the system to reorganise itself when the environment or goals change in order to con-
tinue operating. Convergence is the capability of the system to reach a stable state.
For example, if the interactions between individual air conditioning unit agents keep
the building temperature constant, then we might say the system has decentralised
control, is adaptive to changes in the environment, and converges to a stable state.

To establish and validate a comprehensive set of features that affect the decision of
whether or not to adopt an agent-oriented approach, we follow an iterative approach
based on an initial analysis of specific instances of problems for which MASs have
been implemented. These instances are distinct and are identified using a combination
of literature and preliminary discussions with experts in MAS development. In all, 25
different MAS solutions from the literature were analysed (Table 1 provides a sam-
pling). A set of features that characterise this spectrum of problems is indetified. In
deriving this set, every effort was made to make it domain independent and applicable
to new domains not previously considered as candidates for agent-based solutions.
Features are identified into two categories: problem-related features and solution-
related features (degree of distribution, efficiency, etc).

To elaborate and illustrate the resultant features, we use the following two exam-
ples which have been implemented using a MAS solution:

 When to Use a Multi-Agent System? 101

Example A. An Intrusion Detection System (IDS) adapted from [12]: IDS has a func-
tion by which mobile agents trace intruders, collect information related to the intru-
sion along the intrusion-route, and decide whether, in fact, an intrusion has occurred.
Intrusions are mainly divided into two types: break-ins from outside the local area
network (LAN) and those from inside the LAN. Intruders tend to attack the less-
protected hosts first, gradually approaching hosts armed with stronger protection,
ultimately working up to and reaching their target hosts. Commonly, administrators
do not notice the intrusion. Furthermore, the administrators cannot trace the origin of
an intrusion after the network connection has closed even if the intrusion has been
detected. Types of attack include data driven attacks on applications, host-based
attacks such as privilege escalation, and malware (viruses, trojans).

Example B. A Battlefield Information System adapted from [13]: A battlefield simula-
tion system provides the commander with tactical and strategic intelligence during a
conflict situation. To accomplish this goal, various types of sensors are used to detect
events and objects of interest. This sensor data can then be combined, or fused, with
other sensor data to provide a commander with a much clearer, more complete pic-
ture of the battlefield. Due to the nature of war, there is also a high probability that a
percentage of these sensors will become disabled during the battle. However, when
these sensors are lost or destroyed, the information produced by those sensors must
still be provided to the battlefield commander.

3.1 Problem-Related Features

Any software solution operates within an environment. An environment is a com-
puter system, network or existing software within which the software solution is em-
bedded. In order to perform tasks, the software solution may require input from the
environment. The environment properties are themselves features related to the prob-
lem, we identify the following:

• Dynamic Environment – input from the environment periodically changes;
• Uncertain Environment – input from the environment is possibly untrue;
• Complex Environment – input from the environment is difficult to understand

and/or act upon. It may involve multiple interrelated decisions; and
• Open Environment – new components of the system, network, or existing soft-

ware can appear during runtime.

In Example A, the input from the environment is dynamic. Part of the difficulty in
designing an IDS solution is that the solution is required to handle repeated and new
forms of attack. The extent to which the environment is dynamic depends on the
specific instance to which the IDS is applied. The input from the environment may
also be open. For networked systems, an IDS may be required to monitor attacks on
new computers or network additions that may occur during runtime.

In Example B, the input from the environment is dynamic. A feature of the battle-
field simulation system is to handle new events and objects of interest. In this exam-
ple, the input is open because of the likelihood that existing sensors may be destroyed
and/or replaced.

102 P. Bogg, G. Beydoun, and G. Low

Software solutions often need to interact with other software, or components
within their environment. Interactions might be as simple as an enquiry for informa-
tion, or as complex as a negotiation. The properties of these interactions are them-
selves features of the problem (as adapted from [14]):

• Negotiation – process of coming to agreement on a set of conflicting issues; and
• Deliberation – interactions to establish cooperation on tasks.

For example, software automating an economic business process may require ne-
gotiation with external business partners to acquire goods and services.

In Example B, when sensors are destroyed, some deliberation between the remain-
ing sensors is required in order to compensate.

3.2 Solution-Related Features

Software solutions may need to perform tasks in or acquire input from geographically
separate locations. This distributedness of the solution has the following facets which
are also features of the solution:

• Distributed Data – input from the environment is from geographically separate
locations;

• Distributed Resources – resources required to perform a task are in geographi-
cally separate locations; and

• Distributed Tasks – tasks are performed in geographically separate locations.

In Example A, if the environment is a computer network, then the input is provided
by sensors around the network – so there is distributed data. Since the tasks are re-
quired to be performed remotely there is a need for distributed tasks. (The feature of
task distribution might be dependent on the framing of the problem. A similar IDS
problem might not require distributed tasks.)

In Example B, distributed data is acquired by the battlefield simulation system.
While the sensors used to acquire the data might be distributed, a significant propor-
tion of tasks would be performed centrally.

In addition to the above, we identify a set of non-functional requirements that are
themselves features of a MAS solution:

• Efficiency – in performing tasks, acquiring inputs, and resource expenditure;
• Reliability – in performing tasks (consistency in doing what it’s supposed to do);
• Robustness – in performing tasks (continues to perform in the face of adversity);
• Flexibility – in performing different/new tasks;
• Responsiveness – in performing tasks in response to inputs at runtime;
• Indeterminism at design time – in identifying which tasks to perform; and/or
• Concurrency – in performing tasks (at the same time).

In Example A, the IDS requires that the system be reliable in continuing to detect
known and new forms of attack. Robustness is required in situations where network
components fail. Flexibility is required in detecting new forms of attack. Respon-
siveness is imperative in order to promptly alert the system administrators of possible
intrusions. Concurrency is required when many parts of the network are monitored

 When to Use a Multi-Agent System? 103

simultaneously. There is an expected compromise in general efficiency; however,
new forms of attack are required to be detected efficiently.

In Example B, the system should be reliable so that it can continue to monitor the
battlefield. Robustness is imperative since sensors can fail. Responsiveness is impera-
tive for providing information. Flexibility, handling indeterminism, and high effi-
ciency are not necessarily features of the system.

3.3 Relating MAS Designed Properties to Identified Features

As a first in constructing our framework to identify when a MAS is to be used, we
highlight the relations between agent-level and system-level properties (from the
solution perspective) to the features identified previously in the following way:

• Environment – Dynamic – Agents required to perform tasks in dynamic envi-
ronments are reactive in response to changing inputs and resources, and have the
ability to reason about these changes. As autonomous entities, agents have con-
trol over what to do as a result of undesirable or unexpected changes in order to
achieve their goals. MASs have adaptive behaviour that adjusts to environment
changes. For example, the battlefield simulation system adapts to the disabling
of sensors in order to continue operation.

• Environment – Uncertain – Agents required to perform tasks in an uncertain en-
vironment can reason about the uncertainty of the inputs and resources required.
As autonomous entities, agents have control over what to do as a result of uncer-
tain inputs or resources in order to achieve their goals. As social entities, agents
may exchange information to reduce uncertainty.

• Environment – Open – Agents required to perform tasks in an open environment
can reason about new software components and the changes to the inputs and re-
sources that they bring. As social entities, agents may communicate with new
software components, or communicate about new components with other agents.
MASs have adaptive behaviour that adjusts to new software components in or-
der to preserve system operation. For example, an IDS adapts itself to monitor
new computers on the network to maintain system-level security.

• Distributed – Data – Agents may acquire geographically distributed input in a
pro-active or reactive way. As social entities, agents may exchange data with
other geographically distributed agents. MASs have decentralised control over
the acquisition or exchange of geographically distributed data. For example, the
battlefield simulation system uses sensors distributed over a wide geographic
area to exchange data when one or more sensors are disabled.

• Distributed – Resources – Agents may acquire geographically distributed re-
sources in a pro-active or reactive way. As social entities, agents may exchange
resources with other distributed agents. MASs have decentralised control over
the acquisition or exchange of geographically distributed resources.

• Distributed – Tasks – Agents may be pro-active or reactive in performing tasks
in remote locations. As social entities, agents may ask other agents to perform
tasks remotely. MASs have decentralised control over the execution of tasks,
meaning other agents in remote locations may be asked to perform tasks. For
example, the IDS uses mobile agents to perform remote security-based tasks in a
distributed network.

104 P. Bogg, G. Beydoun, and G. Low

• Interactions – Negotiation – Agents may be pro-active or reactive in the process
of negotiation in order to achieve their goals. As a social entity an agent may
negotiate with one or more agents. As an autonomous entity, an agent may have
control over what information is relevant to the negotiation. Where negotiation
is needed to regulate the amount of resources amongst entities, MASs may have
convergent behaviour that regulates how these resources are distributed. An ex-
ample of this is in the stabilising of a global market price amongst competing
agents in a market place [15].

• Interactions – Deliberation – Agents may be pro-active or reactive in cooperat-
ing with other agents in order to achieve their goals. As a social entity, an agent
may communicate with other agents. As an autonomous entity an agent may
have control over if, when and how to cooperate and what information is rele-
vant to the cooperation. When cooperation is necessary to achieve a stable state,
MASs may have convergent behaviour that regulates the continuity of the state.
For example, air conditioning units may be required to cooperate in order to
regulate global temperature, and a MAS solution provides the regulation of the
global temperature by the local agent interactions.

• Efficiency – As autonomous entities, agents may provide efficiency by having
control of its input, resources and tasks that is independent from a controller. For
example, an autonomous Mars rover reduces the communication control over-
head from Earth. Agents may also reason about how to perform tasks more effi-
ciently. MASs that have decentralised control and adaptivity provide efficiency
by reducing the overhead that would normally be required of a centralised control
to adapt and regulate variables in response to changes in the environment. For ex-
ample, an IDS is efficient in the sense that new attacks are detected by local
agents in order to maintain global security.

• Reliability – As autonomous, reasoning entities, agents may provide reliability
by reasoning about environment changes that may affect task performance.
MASs that have adaptive behaviour provide reliability in regulating system-level
behaviours when the environment changes.

• Robustness – As autonomous entities, agents may provide robustness by having
control over self-maintaining tasks in the event of a problem (the Mars rover
might be capable of self-healing [9]). MASs that have decentralised control,
adaptivity and self-maintenance provide robustness in task operation by adapting
to parts (or agents) of the system that malfunction. For example, a battlefield
simulation system with decentralised control is robust in operation because it
adapts to the loss of sensors.

• Flexibility – As autonomous, reasoning entities, agents may provide flexibility
by reasoning about new and different tasks to be performed, and having control
over when to perform them. MASs may have adaptivity that adjusts the system
operation to new problems or tasks. For example, the MAS for an IDS provides
flexibility in detecting new forms of attack.

• Responsiveness – An agent is reactive to environment changes that affect task
performance. As an autonomous entity, an agent has independent control over
how it reacts to environment changes, which improves its responsiveness com-
pared with a centralised controlled approach. MASs may have decentralised
control that improves the responsiveness of the system due to less overhead in
requiring checks with a centralised control.

 When to Use a Multi-Agent System? 105

• Interderminism – As autonomous, reasoning entities, agents may reason about
what task is best to perform, and have control over the performance of this task.

• Concurrency – MASs as a composition of autonomous, reasoning agents may
perform tasks that are required to be concurrent.

It is important to note that although we define features independently from one an-
other, often in real world problems they are conjoined. For example, an IDS system
requires responsiveness in distributed task performance in a dynamic environment.
An agent oriented solution might address these required features with an emergent
global reactive system response due to proactive distributed task performing agents.

4 Framework for Determining MAS Suitability

In this section, we develop a framework that assesses the suitability of a MAS solu-
tion given a specific problem. In section 3, we outlined a preliminary set of features
that characterise a general set of problems. We also related specific properties of
agent-oriented solutions to specific features of problems. Some of the properties of
agent-oriented systems (solutions) are due to properties of the agents themselves, and
some are due to their collective interactions as a MAS – these are referred to agent-
level and system-level properties respectively [16]. One or more of the agent-level or
system-level properties may be useful in addressing the required features for a par-
ticular problem. Table 1 illustrates the ratings given (1-5) for each feature on the
extent to which it appropriately described the problem domain for a selection of the
MAS solutions analysed from the literature. The elicitation of ratings was performed
by one of the researchers using an agreed set of instructions that provided very spe-
cific definitions for each feature and each rating. An example of the way that we
determined the extent to which a problem feature was present is described for
robustness:

Robustness – consideration given to the continual performance of the tasks by the
software under conditions of adversity (adversity might be computational failure,
or communication medium failure).
What consideration is needed towards how robust the software should be?

1. None – the software does not need to be robust
2. Small – a few tasks should be robust in performance
3. Moderate – a number of tasks should be robust in performance
4. Widespread – most tasks should be robust in performance
5. Whole – the whole system should be robust in performance

We constructed a four step framework which takes a problem instance and pro-
duces an assessment of the suitability of a MAS solution.

1. Rate the importance of each of the problem and solution-related features
identified in Sections 3.1 and 3.2 respectively (and listed in Table 1) for the
problem instance.

2. For each feature from step 1, identify one or more properties of a MAS solu-
tion that addresses it (see also Section 3.3).

106 P. Bogg, G. Beydoun, and G. Low

Table 1. Features for alternative problem domains

Feature Intrusion
Detection

Battlefield
Simulation

Patient
Care

Search &
Rescue

Document
Recommend

MASFIT

Environ – Dynamic 5 5 4 5 3 4

Environ – Uncertain 4 4 2 4 3 3

Environ – Open 4 4 4 2 2 3

Distributed – Data 5 5 5 5 4 4

Distributed – Resource 2 4 3 4 5 4

Distributed – Tasks 4 2 3 5 4 2

Interact – Negotiation 1 1 1 1 3 5

Interact – Deliberation 1 1 4 1 4 3

Efficiency 3 4 5 4 3 3

Reliability 4 4 4 4 3 4

Robustness 4 5 4 4 5 2

Flexibility 2 2 4 2 5 2

Responsiveness 5 5 3 5 3 3

Indeterminism 4 2 1 4 2 5

Concurrency 4 3 5 2 4 4
 (Ratings: 5 very high; 4 high; 3 moderate; 2 low; 1 very low)

Problem domains: Intrusion detection [12]; Battlefield information system [13]; Multi-agent patient
care [17]; Human-Robot Teaming for Search and Rescue [18]; Document recommendation tools
[19]; and Masfit, fish auction MAS [15]

3. Determine the extent that a MAS solution may address the problem and solu-

tion-related features identified in step 1.
4. Using the importance of each feature identified in step 1 and the extent that

the MAS solution addresses this feature in step 3, determine the appropriate-
ness adopting a MAS approach to solve the problem.

5 Conclusion and Future Work

Our aim was twofold: firstly to abstract key features from a variety of different prob-
lem domains. Features were cyclically pruned on the basis that they were significant
determinants of whether or not a MAS was suitable. Secondly, to construct a frame-
work which assesses the suitability of a MAS solution, given a set of problem and
solution-related features.

Whilst our feature identification may be biased by the chosen examples and the
way each problem was originally framed, resultant features actually generalise (and
address) all criteria described by [1, 9, 10] with one exception: when extending legacy
systems from [1]. We propose extending our set of features to identify any need for
wrapper agents in situations such as extending legacy systems and/or interfacing with
other non agent-based resources.

 When to Use a Multi-Agent System? 107

Our framework can be used where alternative ways of addressing a solution are
considered. For example in the Mars rover scenario, self-healing might be considered
when robustness is necessary in performing distributed tasks in the event there is a
problem. However, self-healing is not the only means of satisfying the need for ro-
bustness – an alternative means might be to have redundancy (many of the same sys-
tem operating). Steps 2-4 in the proposed framework allow the designer to consider
the appropriateness of a MAS solution for both these means of satisfying the need for
robustness. In addition our framework, being domain independent, may be applied to
scenarios in which MASs have yet to be applied in order to determine its suitability.

Our analytic framework requires further work and validation. We currently have a
set of suggested problem and solution-related features. We need to validate these
features and determine if additional features should be included. We also need to
determine the importance of each feature in the overall decision process. We have
started by examining the appropriateness of an agent-based solution to satisfying each
feature in Section 3.3. As part of our validation process we plan to use the proposed
framework on yet untested applications of MAS. We are currently considering call
routing and management applications. Further, structured interviews with experts
in AOSE will also confirm the appropriateness of the identified features and the ex-
tent to which properties of a MAS address identified problem and solution-related
features.

References

1. Wooldridge, M.: An Introduction to Multi Agent Systems. Wiley, Chichester (2002)
2. Horlait, E.: Mobile Agents for Telecommunication Applications (Innovative Technology

Series: Information Systems and Networks). Kogan Page Science, Portland (2003)
3. Rodriguez, J.A.: On The Design and Construction of Agent-Mediated Electronic Institu-

tions. Artificial Intelligence Research Insitute, UAB - Universitat Autonòma de Barcelona,
Barcelona (2003)

4. Guessoum, Z., Rejeb, L., Durand, R.: Using adaptive Multi-Agent Systems to Simulate
Economic Models. In: AAMAS 2004. ACM, New York (2004)

5. DeLoach, S.A., Kumar, M.: Multi-Agent Systems Engineering: An Overview and Case
Study. In: Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp.
236–276. IDEA Group Publishing (2005)

6. Wooldridge, M., Jennings, N.R., Zambonelli, F.: Multi-Agent Systems as Computational
Organizations: The Gaia Methodology. In: Henderson-Sellers, B., Giorgini, P. (eds.)
Agent-Oriented Methodologies, pp. 136–171. IDEA Group Publishing (2005)

7. Padgham, L., Winikoff, M.: Prometheus: A Practical Agent-Oriented Methodology. In:
Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp. 107–135.
IDEA Group Publishing (2005)

8. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS: An Agent
Oriented Software Development Methodology. Journal of Autonomous Agents and Multi-
Agent Systems 8, 203–236 (2004)

9. De Wolf, T., Holvoet, T.: Towards a full life-cycle methodology for engineering decentral-
ise multi-agent systems. In: Fourth International Workshop on Agent-Oriented Method-
ologies, San Diego (2005)

108 P. Bogg, G. Beydoun, and G. Low

10. EUROSCOM: MESSAGE: Methodology for engioneering systems of software agents. Fi-
nal guidelines for the identification of relevant problem areas where agent technology is
appropriate. EUROSCOM Project Report P907 (2001)

11. Serugendo, G.D.M., Gleizes, M.-P., Karageorgos, A.: Self-Organisation in multi-agent
systems. The Knowledge Engineering Review 20, 165–189 (2005)

12. Asaka, M., Okazawa, S., Taguki, A., Goto, S.: A Method of Trading Intruders by Use of
Mobile Agents. In: 9th Annual Conference of the Internet Society (1999)

13. Maston, E., DeLoach, S.: An Organization-Based Adaptive Information System for Battle-
field Situational Analysis. In: Integration of Knowledge Intensive Multi-Agent Systems
(2003)

14. Walton, D.: The New Dialectic (1998)
15. Cuní, G., Esteva, M., Garcia, P., Puertas, E., Sierra, C., Solchaga, T.: MASFIT: Multi-

Agent System for Fish Trading. In: Proceedings of the 16th European Conference on Arti-
ficial Intelligence (2004)

16. Beydoun, G., Gonzalez-Perez, C., Henderson-Sellers, B., Low, G.C.: Developing and
Evaluating a Generic Metamodel for MAS Work Products. In: Garcia, A., Choren, R., Lu-
cena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005. LNCS,
vol. 3914, pp. 126–142. Springer, Heidelberg (2006)

17. Reed, C., Boswell, B., Neville, R.: Multi-agent Patient Representation in Primary Care. In:
Miksch, S., Hunter, J., Keravnou, E.T. (eds.) AIME 2005. LNCS, vol. 3581, pp. 375–384.
Springer, Heidelberg (2005)

18. Nourbakhsh, I., Lewis, M., Sycara, K., Koes, M., Yong, M., Burion, S.: Human-Robot
Teaming for Search and Rescue. IEEE Pervasive Computing (2005)

19. Pavon, J., Gomez-Sanz, J.: Agent Oriented Software Engineering with INGENIAS. In:
Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS, vol. 2691, pp. 394–
403. Springer, Heidelberg (2003)

Multiagent Incremental Learning in Networks

Gauvain Bourgne1, Amal El Fallah Seghrouchni2, Nicolas Maudet1,
and Henry Soldano3

1 LAMSADE, Université Paris-Dauphine
Paris 75775 Cedex 16, France

{bourgne,maudet}@lamsade.dauphine.fr
2 LIP6, Université Pierre and Marie Curie

104, Avenue du Président Kennedy - 75016 - Paris, France
Amal.Elfallah@lip6.fr
3 LIPN, Université Paris-Nord

93430 Villetaneuse, France
soldano@lipn.univ-paris13.fr

Abstract. This paper investigates incremental multiagent learning in structured
networks. Learning examples are incrementally distributed among the agents, and
the objective is to build a common hypothesis that is consistent with all the exam-
ples present in the system, despite communication constraints. Recently, different
mechanisms have been proposed that allow groups of agents to coordinate their
hypotheses. Although these mechanisms have been shown to guarantee (theoret-
ically) convergence to globally consistent states of the system, others notions of
effectiveness can be considered to assess their quality. Furthermore, this guar-
anteed property should not come at the price of a great loss of efficiency (for
instance a prohibitive communication cost). We explore these questions theoreti-
cally and experimentally (using different boolean formulas learning problems).

1 Introduction

Different tasks can be achieved by groups of autonomous agents, either competitively
or cooperatively. In this paper, we are interested in multiagent concept learning: group
of agents perceive individually and locally the environment (receiving examples), and
cooperate to come up, each of them, with a “satisfying” underlying concept (hypothe-
sis). We believe there are (at least) two features that must be taken into account when
a group of distributed agents are collaborating to achieve such a common learning task
(we suppose agents to be cooperative and trustworthy):

– the learning task is likely to be incremental, that is the training set is not given a
priori. Instead examples are collected incrementally (and locally) by agents;

– communications between agents cannot be guaranteed. This can be due to the fact
that the communication channel may be unreliable, and/or simply that there exists a
(fixed or evolving) topology constraining interactions between agents. In this paper
we are concerned with this latter aspect of the problem.

A typical example application would be a distributed sensor network, where each sen-
sor (seen as an agent) would have control over some restricted area, and would need

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 109–120, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

110 G. Bourgne et al.

to interact with neighbours sensors in order to analyze the behaviour of some unknown
third-party. The research challenge is then to design mechanisms that enjoy efficiency
properties without being overwhelmingly burdening as far as communication is con-
cerned. We are not aware of any attempt to tackle both features simultaneously. In
particular, an incremental multiagent algorithm was proposed in [1], but it assumes that
the system is a fully connected society of agents. More generally, learning in complex
situations (involving uncertainty and unreliable communications) is performed with a
numerical model, see e.g. [2]. Ontañon et al. [3] is a notable exception, and presents an
argumentation based multiagent learning system for case-based reasoning.

The purpose of this paper is to provide a first approach to tackle symbolic learning in
networks of agents (as we shall see, our experimental study provides interesting clues
to develop more refined variants). This work will be based on a hypothesis refinement
framework described in [4]: the general idea of this mechanism is to allow agents to
propagate relevant examples to a learning agent. While the proposed mechanism has
been shown to guarantee some theoretical consistency properties, other aspects should
be considered before one can conclude that it is practically useful. For instance, it is
crucial to analyze how costly would be such a mechanism in terms of communications.
The first contribution of this work is to provide such an analysis. In practice, there are
many other parameters that are needed to assess the quality of the mechanism. Is the ob-
tained hypothesis accurate, and concise? Does the mechanism end up replicating every
examples? Does it requires lots of internal computations? In this paper, we discuss these
aspects by performing a number of experiments on different networks representing typ-
ical structures (like lines, trees, or small worlds).

The remainder of this paper is as follows. Section 2 presents the basic ingredients
of our approach, giving details on the knowledge representation, and the key notion of
consistency, which represents the adequacy between an hypothesis and a set of exam-
ples. Section 3 gives the details of the main mechanisms used in the paper. The proposed
mechanism can be guaranteed to ensure consistency at the global level, but may require
a quadratic number of communications in the worst-case. To get a clearer picture of
the situation, we ran several experiments that are reported and commented in Section 4.
Section 5 discusses possible extensions, and Section 6 concludes.

2 Formal Model

This section presents a general formal model for dealing with consistency between
groups of agents in a multiagent system. It is here presented in the context of multiagent
concept learning (interpreted as the building of a common consistent hypothesis).

2.1 Knowledge Representation

We take a system populated by n agents a1, . . . , an. Each agent ai has two different
kinds of knowledge:

– Ei is the example memory, representing certain, non-revisable individual knowl-
edge of each agent. This set represents the collected knowledge of each individual
agent, and would be called observation set in other contexts. These examples are
certain and fully described (we do not consider uncomplete or noisy information).

Multiagent Incremental Learning in Networks 111

– hi is the working hypothesis, or favourite hypothesis of the agent, representing
the uncertain, explicit knowledge of the agent. It is derived from non-monotonic
inferences and is therefore revisable.

The following representation will be used for learning boolean formulae. We consider a
propositional language Lp, defined over a set of atomsA. An example e in an example
memory is represented by a tag + or − (depending wether they belong or not to the
target concept) and a description which is a conjunctive statement, that is, a conjunction
of atoms fromA. An example memory Ei will then be divided in two sets E+

i and E−
i

that contains respectively examples labeled with + (positive examples) or − (negative
examples). An hypothesis will then be a disjunction of conjunctive statements, or terms,
that is hi = p1 ∨ . . . ∨ pm, where each term pk is a conjunction of atoms (pk =
a1 ∧ . . . ∧ al) fromA.A hypothesis is thus a formula in disjunctive normal form.

2.2 Consistency

As hypotheses are uncertain, they can be in contradiction with some other knowl-
edge. We want to ensure that the working hypothesis hi has some property ensur-
ing its internal coherence and adequacy with the non-revisable knowledge Ei. Very
abstractly, we shall capture this adequacy by a complete binary relation Cons(h, E)
between an hypothesis h and certain knowledge E, the consistency relation. For a
given case, we will assume that there exists a hypothesis h0 that is consistent with
the union of the sets of all example memories (in our concept learning application, it
means that the target concept can be expressed in the hypothesis language). To instan-
tiate consistency in concept learning, we first introduce a generality relation. We will
say that a term p is more general than another term p′ (p |=s p′), iff the constitut-
ing atoms of p are included in those of p′. Then a hypothesis covers an example iff
one of its term is more general than the example’s description, and covers an exam-
ple set iff it covers every examples in it. We shall then consider that an hypothesis is
consistent with a set of examples E (noted Cons(h, E)) iff it ensures (i) coherence:
h does not cover any negative example of E−; and (ii) completeness: h does cover
all positive example of E+. This consistency relation is compositional, meaning that:
Cons(h, O) and Cons(h, O′) iff Cons(h, O ∪O′).

This notion of consistency is easily extended to groups of agents.

Definition 1 (Group Consistency). An agent ai or an hypothesis hi is group consistent
wrt. the group of agents G (GCons(ai, G) or GCons(hi, G)) iff Cons(hi,∪ai∈GEi).

Depending on the cardinality of the group G, we can talk of different “levels” of con-
sistency: (i) internal consistency— the limit case when G is limited to a single agent
(ensures that its hypothesis is consistent with its certain knowledge (Cons(hi, Ei)); (ii)
peer consistency— when G is a pair of agents (important in our context for character-
izing results of local bilateral communications.); and (iii) MAS-consistency —the limit
case involving all agents within the society.

2.3 Revision Mechanisms

To ensure consistency at these different levels, agents will use reasoning and commu-
nication processes that we shall call revision mechanisms. As with consistency, it is

112 G. Bourgne et al.

possible to consider different levels of revision mechanism depending on the number of
agents involved in the process. To begin with, each agent will be equipped with an inter-
nal revision mechanism, which is a mechanism µ by which an agent ai (with its working
hypothesis hi and its example memory Ei) receiving an example e updates its example
memory by adding up e, and update its working hypothesis to h′

i = µ(Ei, hi, e) such
that Cons(h′, Ei ∪ {e}) (such a mechanism is said to preserve internal consistency).
Then, a local revision mechanism is a mechanismM2 by which an agent ai receiving
a labeled example e communicates with another agent aj to update its working hypoth-
esis and possibly the hypothesis of the other agent. A global revision mechanism is a
mechanismMn by which an agent ai receiving a labeled example e triggers a series of
local revision mechanisms to update its working hypothesis and possibly the hypothe-
ses of the other agents. A revision mechanismM is said to guarantee GCons(ai, G)
iff, for any example e reaching ai, it is the case that the execution ofM by ai with G
will result in a situation where GCons(ai, G) holds.

2.4 Communicational Constraints

The communication of agents is restricted by topological constraints. A given agent
will only be able to communicate with a number of neighbours. We can then construct
a communication graph representing these communication links between the agents1.
In the following, we will suppose that this graph is connected, that is, it contains a path
between any pair of agents, and that it remains static during the time required for the
revision process (though it could possibly change between revisions).

2.5 Problem Description

Given a system of n agents a1, . . . , an, the objective is usually to devise some global
mechanism guaranteeing MAS-consistency. Agents cooperate during the revision to
form a common MAS-consistent hypothesis. When an agent ai receives a new exam-
ple contradicting the common hypothesis, this agent triggers a revision mechanism to
rebuild another hypothesis and ensure its MAS-consistency. Once the revision is done,
another example can be received, and the process can be iterated. This iteration pro-
duces a sound multiagent incremental learning process. The multiagent incremental
learning mechanism described in [1] can be interpreted as a global revision mecha-
nism guaranteeing MAS-consistency in fully connected societies of agent. However,
this solution offers no guarantee when we have to deal with some communicationnal
constraints restricting the communicationnal links between the agents.

3 Mechanisms with Propagation

In the fully connected context studied in [1], a single learner agent initiating the re-
vision would use in turn all the other agents as critics to validate its hypothesis until

1 We assume that the relation that links two neighbours in a communication graph is symmetric,
but of course not transitive. Symmetry ensures that an agent can always reply to a request.

Multiagent Incremental Learning in Networks 113

all these agents would directly accept the same hypothesis. However, when commu-
nications are constrained, a single learner cannot directly propose its hypothesis to all
others agents. The global mechanism must then rely on some kind of propagation. In
[4], a layered mechanism based on these principles and decomposed at three levels
has been proposed. It is a simple mechanism that we study here as a first step-stone
whose analysis will be helpful to devise more refined mechanisms in the future. Each
agent possesses an internal revision mechanism µ preserving internal consistency. Two
agents can then reach a common peer-consistent hypothesis through a local revision
mechanism where a learner agent use its internal revision mechanism to propose hy-
potheses to a critic agents. At last, a global revision mechanism articulates these local
exchanges to ensure that MAS-consistency is reached. We first recall briefly the basic
ideas of this mechanism, before turning on to the examination of its properties.

3.1 Learning Process

Our internal revision process is based on MGI, an incremental bottom-up learning
process fully described in [5]. As said before, the hypothesis is a disjunction of terms
p. In MGI, each of these terms is by construction the lgg (least general generalisa-
tion) of a subset of positives examples {e1, ..., en}, that is the most specific term cov-
ering {e1, ..., en}. The lgg operator is defined by considering examples as terms (using
their description), so we denote as lgg(e) the most specific term that covers e, and as
lgg(h, e) the most specific term which is more general than h and that covers e. Restrict-
ing the term to lgg is at the core of many bottom-up learning algorithms (for instance
[6]). Taking a current hypothesis h, consistent with an example memory E = E+∪E−,
and a new labeled example e, the revision mechanism builds a new hypothesis h′ con-
sistent with E∪{e}. There are three possible cases: consistent example— Cons(h, {e}
(no update needed); positive counterexample — e positive and h |=s e (here, we seek to
generalise in turn the terms p of h. If a coherent generalisation p′ = lgg(p, e) is found,
p′ replaces p in h, otherwise h ∨ lgg(e) replaces h); and negative counterexample — e
negative and h |=s e (each term p covering e is then discarded from h and replaced by
a set of terms {p′1,, p′n} that is, as a whole, coherent with E− ∪ {e} and that covers
the examples of E+ uncovered by the suppression of p).

3.2 Local Hypotheses Exchange

At the local level, pairs of agents use a simple protocol for hypothesis exchanges, as
proposed in [4]. The agent applying this mechanism, calledM2

U , takes an active role in
building and refining an hypothesis. It is called the learner agent. The second agent is
a critic, that uses its knowledge to acknowledge or invalidate the proposed hypothesis.
The learner agent ai first updates its hypothesis hi to h′

i using an internal revision
mechanism µ guaranteeing internal consistency. Then it proposes it to its partner agent
aj , and aj either replies with acceptdirect and adopts h′

i as its new working hypothesis
if Cons(h′

i, Oj), or otherwise sends counter-example(o′), where o′ ∈ Oj is such that
Cons(h′

i, {o′}) is false. Upon reception of a counter-example, ai applies again µ to
revise its hypothesis with the new observation, and proposes the resulting hypothesis
as before, except that an acceptation will now result in a acceptindirect message. This

114 G. Bourgne et al.

revision mechanism can be shown to guarantee peer consistency [4], and ensures that
afterwards, both agents share the same hypothesis.

3.3 Propagating Hypotheses in a Network

In [4], Bourgne et al. propose to use the same principle as in [1] of a main learner being
the origin of the hypothesis, but neighbours will be in turn critics and learners, acting
as proxies to propagate the hypothesis. To ensure that propagation does not reach the
same agent from two different ways, cycles are eliminated by constructing (on-the-fly)
a spanning tree (a tree-like sub-graph that contains all the nodes of the original graph).
The global revision mechanism Mn

P [4] does this while propagating the hypothesis.
The agent initiating Mn

P is called the root, it will have a role of learner during the
whole process, and will be the source of the adopted hypothesis. It is initially the only
marked agent. It first sends request-links messages to all its neighbours, who become
its children and are thus marked. Then, it selects its first child to take a role of critic
in a local exchange (withM2

U), before asking it to propagates the resulting hypothesis.
When asked to propagate an hypothesis, a child ac would first send request-links to its
neighbours (except its parent) if it has not already done so (marked neighbours will
reject the request while others would become its children).

– If some child has not accepted its current hypothesis yet, ac would select it to
become a critic and take the role of the learner to propose in turn its hypothesis
(adopted from its parent).
• If the local exchange ends with acceptdirect, ac asks its child to propagate in

turn this hypothesis.
• If it ends with acceptindirect, as ac has learned a counter-example and changed

its hypothesis, it informs its parent by sending a message hyp-changed. Receiv-
ing this message, the parent will act as a learner to get the new counter-example
through a local exchange, and warns its own parent to do the same until the root
get the counter-example, and build a new hypothesis.

– Otherwise, all its children, if any, have acknowledged its hypothesis h, and ac can
tell its parent that it acknowledges h (strong-accept). The parent would then check
if it has other children that have not yet strongly accepted h, and start a local ex-
change with them or send a strong accept to its own parent.

When the root has received a strong accept from all its children for its current hy-
pothesis, it means that this hypothesis is consistent with all agent and has been adopted
throughout the whole network. The global revision is completed. This mechanism guar-
antees MAS-consistency (provided the system is connected, of course), and the result-
ing MAS-consistent hypothesis is shared by all agents in the system after termination.
Note also that it behaves like the SMILE algorithm [1] when the network is fully con-
nected. However, this only provides a rather coarse-grained understanding of the effec-
tiveness of this mechanism, and many questions remain. How accurate is the obtained
hypothesis? How compact is it? On top of that, the complexity of the process consist-
ing in building the propagation network on-the-fly while propagating the hypothesis
may raise doubts on its practical relevance. If the communication cost involved is pro-
hibitive, this would be a severe weakness if the mechanism were to be deployed on
networks involving a large number of agents. We now turn our attention to these issues.

Multiagent Incremental Learning in Networks 115

3.4 Communication Complexity

To discuss the communication complexity of our mechanism, we distinguish two types
of communications, whether their purpose is to build the spanning tree (link requests)
or to validate a hypothesis. The first kind of communication can indeed be done once
for all before learning if the communicational links are stable, as we assume here. For
establishing the spanning tree, each agent has to request links with each of its neigh-
bours (except its parent, if any), the cost would thus be O(e) where e is the number of
edges. The worst case would then be O(n2), when the graph is fully connected.

Then, for validating a hypothesis, we first compute the number of messages that is
needed to propagate a counter-example back to the root in the worst case. This oc-
curs when the counter-example is as far as possible from the root, and is used as a
critic in last position. Let L be this maximal path between the root a0 and an agent
ak. The hypothesis of the root would only be proposed to ak after being validated by
all the other agents (as ak is the last critic), thus after n − 1 series of dialog which
size is roughly constant (propose(h), accept, propagate, and later on strong-accept). Then,
when the hypothesis is proposed to ak, the counter example is given, and a series of L
exchanges (namely, propose(h), counterexample(e), propose(h′)), accept, hyp-changed propa-
gate this counter-example back to the root. Thus, for each counter-example, we have
O(L+n) communications of 4 to 5 messages. As in the worst case, L = n−1, there is
at worst O(n) communications per counter-example. The total number of communica-
tions for hypothesis validation is thusO(nc) where c is the number of counter-examples
involved in building the hypothesis, which surely cannot be greater than the number of
examples in the system that are not known by the root. This upper bound on the number
of counter-examples involved is tight, as the following example shows.

Example 1. Suppose n agents are connected on a single line, from a1 to an. The con-
cept to be found is ab ∨ oc. The example memories are initially empty, except for En

which contains two examples {bac+, bec−}. The working hypothesis is bac for all
agents. Now a1 receives boc+: h is made more general and becomes bc. This hypothesis
is propagated and accepted by all agents until an, which provides the counter-example
bec−. Then an−1 proposes an empty hypothesis, since its memory does not contain any
positive example to cover. an provides again a counter-example by exhibiting bac+: a
new hypothesis bac is formed and accepted. But now observe that the same dialogue
will bilaterally occur between agents to propagate back to the root, where boc ∨ bac is
accepted. In this example, the two examples initially present in the system have been
used by each agents as counter-examples.

In practice, c will really depend on n. Indeed, the probability that an hypothesis incre-
mentally built by an agent is contradicted by another example in the system depends on
the number of examples upon which it is built, and such a number will tend to be lower
when n increases (as each agent holds fewer examples).

4 Experiments

We now describe our experiments with this mechanism, used for learning several dif-
ficult boolean formulas. An experiment is typically composed of 20 to 50 runs, each

116 G. Bourgne et al.

one corresponding to a sequence of examples incrementally learned by the MAS: a new
example is sent to a random agent when MAS-consistency is restored.

4.1 Parameters

We considered different boolean problems of various difficulty. The 11-multiplexer
(M11, see [7]) uses 3 address boolean attributes a0, a1, a2 and 8 data boolean at-
tributes d0, ..., d7. The formula is satisfied when the number coded by the 3 address
attributes is the number of a data attribute whose value is 1. More complex variants
are M11 9, where 9 irrelevant attributes are added to the examples description, and the
20-multiplexer, M20, which involves 4 address boolean attributes and 16 data boolean
attributes. X-OR problems encodes a number of boolean attributes whose sum must be
odd. We will use these parity problems with 5 attributes, and either 5 or 15 irrelevant
attributes (Xor5 5 and Xor5 15). At last, we shall use a simple DNF with 4 terms on
9 attributes, DNF4-9, whose formulae is a0a1a2∨a2a3a4∨a4a5a6∨a6a7a8. The total
number of attributes, and the number of terms of the target formulas of these problems
can be found in Table 1. Note that there are 2p possible examples where p is the number
of attributes, and half of them are positive (except in DNF4-9).

We tested the mechanism in different settings. Two parameters can vary: the num-
ber of agents in the system, and the type of network. Different classical topologies of
networks have been tested. Fully connected graphs are used to compare the perfor-
mance of Mn

P with those of SMILE [1] in an equivalent context. Lines graph, where
every agent ai is connected to two agents, ai−1 and ai+1 except for a0 and an. It typ-
ically provides worst-case scenarios. Regular trees of degree 3 are taken as examples
of hierachical structures. Finally, we used small worlds, that are quite common in self
organised networks such as for instance peer-to-peer or social networks.

4.2 Evaluation

We assess the performances according to several effectiveness and efficiency measures.

– Effectiveness is evaluated through two different measures. Accuracy is the classical
rate of accurate classification of a batch of test examples distinct from the learning
set, whereas the hypothesis size is the number of terms in the hypothesis. A small
hypothesis is more simple and easier to understand.

– Efficiency is concerned with three aspects: (i) redundancy, which is used to study
the distribution of the examples in the MAS memory, is written RS = nS/ne,
where nS is the total number of examples stored in the MAS, and ne is the total
number of examples received from the environment in the MAS; (ii) computational
cost is the mean number of internal revisions performed during a global revision;
and (iii) communicational cost finally is mainly measured through the mean size
of data transfer per global revision, which expresses the cost in bandwidth of the
communications during a revision.

4.3 Results

We only illustrate the main results of our experiments with M11 and Xor5 15 problem,
but these conclusions on the general behaviour have been checked with all problems.

Multiagent Incremental Learning in Networks 117

Redundancy and computational cost. Figure 1 shows the redundancy results for dif-
ferent 20 agents networks faced with a M11 problem. We can see that for fully con-
nected societies, the propagation mechanism behaves exactly like SMILE, as ensured
by construction. In other topologies, the redundancy is slightly higher, especially for
lines, but remains quite low (e.g. 2.85 for M11 with a line of 20 agents). The average
ratio of redundancy between Mn

P and Smile is also low (around 1.2), with a maxi-
mum of 1.66 for lines of 20 agents in complex problems (Xor5 15). It tends to be
more important in complex problems, where redundancy is slightly higher. Dealing
with communicational constraints might increase redundancy, but not importantly. The
same behaviour is observed for the computational cost. In all cases, the number of in-
ternal revision per global revision and the final redundancy appear to be linear with
the number of agents. Besides, the shorter the Characteristic Path Length (CPL) in the
spanning tree, the better the redundancy and computational cost.

Fig. 1. Redundancy of MP with 20 agents in different topologies compared to a 20-SMA using
Smile (M11 problem)

Communicational cost. We now detail the results regarding communicational effi-
ciency. Figure 2 gives the mean size (in bits) of data transfer per global revision for M11
problem. The propagation mechanism again has a slightly higher cost than SMILE. But
here, due to the linking process, the worst configuration is the fully connected society.
In order to ensure a better readability of the results, we used static structures, but as the
spanning tree is rebuild at each revision, these results should be the same with variable
connections. However, if we known that the links are static, we can build the spanning
trees only once and memorize it. To assess communicational cost in such cases, we
measured a link free communicational cost that does not take into account the linking
process. As a result, all topologies have more similar cost, though the line network still
suffer from the highest number of exchanges needed to get a counter-example back to
the root.

Effectiveness. Accuracy and hypothesis size have been measured for different topolo-
gies with our mechanism and compared with results from SMILE [1]. Similarly, our
mechanism improves both accuracy and hypothesis size when compared to a single
agent using MGI. This result holds for all topologies tested, however the extent of

118 G. Bourgne et al.

Fig. 2. Communicational cost of MP in different topologies compared to a 20-SMA using Smile,
with or without linking process (M11 problem)

this gain varies: best results are observed for fully connected societies, whereas lines
structured societies of agents get less benefit.This accuracy gain is observed for all our
boolean problems, especially for those whose difficulty is related to the size of the
hypotheses space. Having each new hypothesis formed over only a subset of the in-
formation in the system and then refined through relevant counter examples seems to
guide the exploration of the hypotheses space towards better hypotheses. Our internal
learning process is indeed order dependent. Trying several combinations depending on
the agents forming the hypotheses and having relevant examples then given in order
boost the effectiveness of this bottom-up algorithms. Note that though there are several
agents and memories implied, this is not an “ensemble effect” as a single common con-
sistent hypothesis is formed. Topologies in which a given agent has more neighbours
in its spanning tree show significantly better results. Our conjecture is that it is linked
with redundancy. The more an hypothesis is refined by relevant counter-examples, the
more precise it grows. Hypotheses formed with a small number of examples are more
likely to be refined. If redundancy is low, each agent will only have a small fraction
of the total number of examples, and thus hypotheses formed individually by them are
more likely to trigger refinement. This conjecture is supported by experimental measure
showing that the most precise hypotheses correspond to the maximal number of internal
revisions. Better results are observed on topologies that exhibit low redundancy (that is
fully connected graphs and 3-trees).

This result also holds for mean hypothesis size, and is verified for our different
boolean problems, as shown in the following table, giving accuracy results of MP

with trees, lines or small worlds of 20 agents, along with the results of SMILE with
a single agent and a 10 agents MAS, and those of two standard algorithms: JRip (an
implementation of RIPPER [8]) and Id3 [9]. 2 Table 1 summarizes the results.

2 For the experiments with JRip and Id3, we measured the mean accuracy on 50 trials. JRip and
Id3 parameters are default parameters, except that JRip is used without pruning.

Multiagent Incremental Learning in Networks 119

Fig. 3. Accuracy of MP with 20 agents in different topologies compared to a 20-SMA using
Smile and a single agent 9Xor5 15 problem)

Table 1. Characteristics and compared accuracy results of different boolean problems

Pb att. terms learn. set JRip Id3. Sm 1 Sm 20 MP -3tree 20 MP -line 20 MP -sw 20

M11 11 8 200 88.3 80.7 88.7 96.5 95.2 93.8 96.5
M11 9 20 8 200 73.4 67.9 66.8 82.7 80.5 72.3 77.5
M20 20 16 450 67.7 62.7 64.6 83.0 82.6 74.3 76.4
Xor5 5 10 16 180 52.6 60.8 71.1 83.4 82.6 80.3 81.8
Xor5 15 20 16 500 58.7 95.9 92.6 82.4 84.6
DNF4-9 9 4 100 89.2 95.5 94.5 94.8 94.7

5 Extensions

From our experimental results, it is clear that accuracy, redundancy, computational cost
and (link free) communicational cost depend on the structure of the networks. More
precisely, results are better when the spanning trees used for propagation have a small
depth. It is due to the fact that bringing back counter-examples to the root is quite costly.
Moreover, as each link in the process gets the counter-example, it augments redundancy,
and thus impact effectiveness. Improved versions of this mechanism should then seek to
diminish as much as possible this effect. A first idea is to improve the adequacy of our
spanning tree, by ensuring that it is not deep. If we use a different spanning tree for each
possible root, or build it dynamically, the minimum depth can be achieved by building it
width-first. However, if one wants to use a single spanning tree for all updates, then we
should seek to minimize its mean depth for each possible root, which is equivalent to
minimizing its CPL. Another method would be to avoid tracking the counter examples
back to the root by changing root every time that an hypothesis is refined. The agent
who refined it would thus become a new root and proposes its hypothesis to its children.
To avoid sending too much messages for building new spanning trees, it would then be
best to just adapt the former tree by just changing its root and reversing some parent-
child links. A last idea is to have agents drop the examples they learned from others
after each global revision. This would ensure that there is no redundancy in the system.

120 G. Bourgne et al.

First results with Xor5 15 shows that accuracy is indeed improved (98% accuracy with
500 examples in MAS of 20 agents), and no more dependent of the network structure.
However, communicational cost is then much more important and still depends on the
topology. Some tradeoff (dropping only part of the external examples) could be useful
if the communicational cost is important.

6 Conclusion

This paper provides an analysis of a general consistency revision mechanism dealing
with communicational constraints in structured networks. We have discussed its com-
municational complexity, and evaluated its effectiveness and efficiency in a multiagent
concept learning application, where it has been compared to a simpler mechanism for
fully connected multiagent systems. Experimental results have shown that our mecha-
nism is as effective and only slightly less efficient, despite these constraints. Finally, we
have presented some leads to improve it, based on the analysis of experimental results.

References

1. Bourgne, G., Seghrouchni, A.E.F., Soldano, H.: SMILE: Sound Multi-agent Incremental
LEarning. In: Proc. of AAMAS 2007, pp. 164–171. ACM Press, New York (2007)

2. Stone, P.: Intelligent Autonomous Robotics: A Robot Soccer Case Study. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, San Fran-
cisco (2007)

3. Ontañon, S., Plaza, E.: Recycling data for multi-agent learning. In: ICML 2005, pp. 633–640.
ACM Press, New York (2005)

4. Bourgne, G., Seghrouchni, A.E.F., Maudet, N.: Towards refinement of abductive or inductive
hypothesis through propagation (2008) (under review)

5. Henniche, M.: MGI: an incremental bottom-up algorithm. In: IEEE Aust. and New Zealand
Conference on Intelligent Information Systems, pp. 347–351 (1994)

6. Califf, M.E., Mooney, R.J.: Bottom-up relational learning of pattern matching rules for infor-
mation extraction. Journal of Mach. Learn. Res. 4, 177–210 (2003)

7. Esmeir, S., Markovitch, S.: Lookahead-based algorithms for anytime induction of decision
trees. In: ICML2004, pp. 257–264. Morgan Kaufmann, San Francisco (2004)

8. Cohen, W.W.: Fast effective rule induction. In: ICML, pp. 115–123 (1995)
9. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 121–126, 2008.
© Springer-Verlag Berlin Heidelberg 2008

UML-F in the Design of an Agent-Oriented Software
Framework

Daniel Cabrera-Paniagua and Claudio Cubillos

Pontificia Universidad Católica de Valparaíso, Escuela de Ingeniería Informática,
Av. Brasil 2241, Valparaíso, Chile

daniel.cabrerap@gmail.com, claudio.cubillos@ucv.cl

Abstract. This paper presents a practical development of a study case regarding
the utilization of a non-standard UML-F profile for the specification and docu-
mentation of an agent-oriented software framework devoted to the passenger
transportation domain. UML-F profile does not pretend to replace the standard
UML, but to use existing elements in it to represent in a better way the reality of
a software framework through the adaptation of UML artifacts. The PASSI
methodology has been used as base software engineering methodology for lev-
eraging the multiagent architecture. As a way of ensuring proper development,
it has been complemented with a general process for framework development.

Keywords: UML-F, Framework, Agents, Passenger Transportation.

1 Introduction

Recognizing in the software reuse an alternative with many advantages, such as en-
suring lower development time and lower costs, increased quality levels, increased
productivity, decreased difficulties at the maintenance phase and support in software
production, among the most important, it is necessary to include the techniques and
procedures in developing software aimed at promoting the software reuse. One of
these elements corresponds to the way which a reusable system is described and
documented. The non-standar profile UML-F (UML-Framework) [7] supports the
development and adaptation of object-oriented frameworks, focusing on the location
of the framework variability points.

The current work presents the design of an agent-oriented software framework for
the passenger transportation domain, considering the UML-F profile for the framework
specification. Particulary, in the domain of passenger transportation, the obtaining of a
software framework for passenger transportation will allow to adapt this architecture
according to concrete required characteristics, reducing in an important way the devel-
opment cost, and not less important, while using part of a solution that already has
been used in the past and therefore with the necessary maturity and reliability.

The framework development has been realized on the basis of the use of PASSI
[1], a multiagent-oriented methodology for systems development. PASSI integrates
design models and concepts from both OO software engineering and artificial intelli-
gence approaches using the UML notation. As a way of ensuring proper development,
it has been considered the use of a general process for framework development along

122 D. Cabrera-Paniagua and C. Cubillos

with PASSI, as the latter is designed for concrete systems rather than frameworks.
The considered process for framework development corresponds to the one presented
in [3].

This work represents the continuity of a past reseach in this transportation domain
[6], concerning the development of an agent system for passenger transportation for a
single operator under a demand-responsive scenario.

2 Related Work

In the field of systems development, once the different requirements to satisfy are
relatively stabilized, it is necessary to express the characteristics which will be the
future system through a high-level specification language or using a graphic conven-
tion. At present, the standard UML is one of the most widely used in the specification,
visualization and documentation requirements. However, UML is not exactly an Ar-
chitecture Description Language (ADL). An ADL is a language that delivers elements
to model the conceptual architecture of a software system, modeling explicitly the
components, connectors, and their configurations [2]. However, in this work has been
used UML, because the modeling architecture has been carried out following the steps
of PASSI methodology, and using a graphical tool called PASSI Toolkit [4], based on
UML artifacts.

Is possible to indicate that both, the PASSI methodology and the PASSI Toolkit
were designed for development of agents systems, and not precisely for the develop-
ing of agent-oriented software frameworks, situation observed in this paper. By the
same reason, the UML-F profile was used in the development of some artifacts, with
the aim to fill this lack, and somehow verify the applicability of UML-F profile in the
field of software agents.

3 Software Frameworks and UML-F

According to [5], “a framework is a set of classes that embodies an abstract design
for solutions to a family of related problems, and supports reuses at a larger granu-
larity than classes”.

The UML-F profile constitutes an important aid in the specification and documen-
tation of software frameworks, as it covers and formalises those aspects not covered
so far by the UML standard with regard to the area of modeling frameworks. Some of
the most important features of the UML-F profile are: provides elements of notation
to adequately document well-known design patterns; is built on the standard UML,
that is, the extensions generated can be defined on the basis of mechanisms extension
which in UML already exist; is, in itself, the medium that allows direct way to docu-
ment any pattern framework.

4 Multi-agent Framework Design

In this section, agent framework artefacts are depicted following the PASSI steps. The
first diagram presented is the Domain Description Diagram (see Figure 1). This

 UML-F in the Design of an Agent-Oriented Software Framework 123

Generate Early Payment
Request

(f rom UserAgent)

Government
Entity

Governmental Entity Events
Management

(f rom Gov ernmentAgent)

Active
Destination

Active Destination Events
Management

(f rom Activ eDestinationAgent)

Generate Proposals

(f rom OperationManagerAgent)

Events Processing

(f rom PlannerAgent)

<<include>>

<<include>>

User Events Processing

(f rom Trip-RequestAgent)

VE - Customers
Manager System

User Profile Management

(f rom UserAgent)

Service Request
Management
(f rom UserAgent)

User

User Events Management

(f rom UserAgent)

<<extend>>

Traffic Information
Processing

(f rom Traf f icISAgent)

Traffic Information
System

<<extend>>

VE
Administrator

Events Management

(f rom PlannerAgent)

<<include>>

<<extend>>

<<extend>>

<<include>>

<<extend>>

<<include>> Virtual Enterprise
Management

(f rom VirtualEnterpriseAgent)

<<extend>>

VE - Transaction
System

User Requests Management

(f rom Trip-RequestAgent)

<<include>>

<<include>>

VE - Affiliates Enterprises
Manager System

Trip Schedule

(f rom ScheduleAgent)

<<include>>

Operative Fleet Visualising

(f rom OperationManagerAgent)

<<include>>Virtual Enterprise Affiliation
Management

(f rom VirtualEnterpriseAgent)

<<extend>>

Actual Fleet Management

(f rom TransportOperatorAgent)

TO Solver

Transport
Operator

TO - Fleet
Management System

Vehicle Itinerary
Management

(f rom ScheduleAgent)

Fleet Events Management

(f rom TransportOperatorAgent)

<<include>>

<<extend>>

<<extend>>

Driver

Fig. 1. Domain Description Diagram

diagram is framed within the first stage of the PASSI methodology, corresponding to
the System Requirements Model, and is based on UML use-cases, offering a general
view of all the functionality provided by the system.

Figure 2 shows a Roles Identification Diagram, in which a transport operator
wishes to affiliate to the virtual transportation enterprise by sending a request of af-
filiation. This request, administered by the VirtualEnterpriseAgent, is verified in the
fulfillment of norms, internal policies of the virtual transportation enterprise, and the
business opportunities that this affiliation represents. Having made these checks, the
agent returns a final response on the request.

After knowing the final answer, there is an alternative course of action, represented
by a horizontal labelled bar that is located along the diagram. This label indicates the
existing courses of action, in this case, if the request is accepted or is rejected. Each
course of action alternative has an independent sequence diagram, which describes
the course of action and messaging agreement existing with the final decision taken at
the virtual transportation enterprise. If the affiliation request is accepted, the transport
operator orders the activation of its vehicle fleet. This order is managed by the agent
TransportOperatorAgent, who is responsible for such a change to take place within its
Fleet Management System. After this, vehicles are available within the virtual trans-
portation enterprise to participate in the fulfilment of transportation requests. On the

124 D. Cabrera-Paniagua and C. Cubillos

Fig. 2. Roles Identification for the scenario: “Transport Operator sends an affiliation request to
the Virtual Transportation Enterprise”

other hand, if the affiliation request is rejected, the transport operator registers its
request rejection. Eventually, may request further details on the request rejection
causes. This optional message is graphically represented using the "+" symbol, which
indicates "optional messaging" within the UML-F profile.

The Figure 3 shows a diagram of the phase of Agent Implementation Model, which
is the Multiagent Structure Definition. It is possible to view all actors within the de-
fined architecture in development, and its relationship with the various agents, and the
identifying of transactions related to each of them. The classes identified in the figure
with the symbol "..." indicate that have not yet been established all internal elements
of them (both attributes and methods).

 UML-F in the Design of an Agent-Oriented Software Framework 125

TO Solver

(f rom 01-Dom...)

ScheduleAgent

vehicleID : String
vehicleType : String
itinerary : List

ScheduleAgent()
shutdown()
setup()
register_WithAMS()
register_WithDF()
scheduleTrip()
confi rmTrip()
manageItinerary()
updateItinerary()

<<Agent, adapt-static, hook>>

TO - Fleet
Managem...

(f rom 01-Dom...)

Driver

(f rom 01-Dom...)

User

(f rom 01-Dom...)

VE -
Custom...

(f rom 01-Dom...)

OperationManagerAgent

operationManagerID : String

OperationManagerAgent()
shutdown()
setup()
register_WithAMS()
register_WithDF()
manageNewRequest()
obtainOperationalFleet()
confirmVehicle()

<<Agent, adapt-static, hook>>

Traffic
Informat...

(f rom 01-Dom...)

VE
Administrator

(f rom 01-Dom...)

Transport
Operator

(f rom 01-Dom...)VE - Affil iates
Enterpri...

(f rom 01-Dom...)

Active
Destination

(f rom 01-Dom...)

TransportOperatorAgent

TransportOperatorAgent()
shutdown()
setup()
register_WithAMS()
register_WithDF()
cancelRequest()
reportDelay()
manageAffi liationAccepted()

<<Agent, adapt-static>>

UserAgent

userAgentID : String
userProfile : Profi le

UserAgent()
shutdown()
setup()
register_WithAMS()
register_WithDF()
manageProfile()
newTransportRequest()
selectOption()
cancelRequest()
reportDelay()

<<Agent, adapt-static, hook>>

Trip-RequestAgent

tripRequestAgentID : String

Trip-RequestAgent()
shutdown()
setup()
register_WithAMS()
register_WithDF()
newRequest()
confirmRequest()
activateCancel lation()

<<Agent, adapt-static>>

TrafficISAgent

TrafficISAgent()
shutdown()
setup()
register_WithAMS()
register_WithDF()
informarEvento()
constatarRespuestas()

<<Agent, adapt-static>>

VE -
Transact...

(f rom 01-Dom...)

VirtualEnterpriseAgent

VirtualEnterpriseAgent()
shutdown()
setup()
register_WithAMS()
register_WithDF()
newAffil iationRequest()

<<Agent, adapt-static>>

ActiveDestinationAgent

ActiveDestinationAgent()
shutdown()
setup()
register_WithAMS()
register_WithDF()
informEvent()
verifyAnswers()

<<Agent, adapt-static>>
PlannerAgent

PlannerAgent()
shutdown()
setup()
register_WithAMS()
register_WithDF()
manageCancel lation()
manageDelay()
manageEventGE()
manageEventAD()
manageTrafficEvent()
manageVehicleEvent()

<<Agent, adapt-static>>

GovernmentAgent

GovernmentAgent()
shutdown()
setup()
register_WithAMS()
register_WithDF()
reportEvent()
verifyAnswers()

<<Agent, adapt-static>>

Government
Enti ty

(f rom 01-Dom...)

... ...

...

...

©

...

...

...

...

©

Fig. 3. Multiagent Structure Definition Diagram

On the other hand, the classes with the symbol "©" are those whose methods and
attributes shown are actually all the ones the class possesses.

The stereotype <<agent>> indicates that the classes are agents, and the stereotype
<<adap-static>> denotes those classes that may be subject to changes, but only
changes at the design phase(at runtime is not possible to observe changes in its inter-
nal structure). The stereotype <<hook>> indicates that the class has at least one
method of type "hot spot", that is, their characteristics depends on each particular
implementation derived from the model defined.

5 Conclusion

The specification and documentation of an agent-oriented software framework using
the UML-F profile has been achieved. The incorporation of UML-F into PASSI arti-
facts promotes a wider understanding of the design (as it is UML-based) while in-
creasing the original expressiveness of PASSI for making explicit the variable points

126 D. Cabrera-Paniagua and C. Cubillos

in the resulting agent framework. This software framework will lay the foundations
for the future development of multiple systems independent from it, providing a core
of basic functionality for the passenger transportation, and providing flexibility to
adapt the architecture to diverse concrete situations.

A functional prototype has been developed by extending the original framework
and is currently being tested with Solomon’s benchmark data sets for VRP and spe-
cially adapted for the passenger transportation problem.

Acknowledgements. Partially funded by Grant PUCV 037.215/2008 under the “Col-
laborative Systems” Nucleus Project.

References

1. Burrafato, P., Cossentino, M.: Designing a Multi-Agent Solution for a Bookstore with the
Passi Methodology. In: Fourth International Bi-Conference Workshop on Agent-Oriented
Information Systems, pp. 102–118 (2002)

2. Vestal, S.: A Cursory Overview and Comparison of Four Architecture Description Lan-
guages. Technical report, Honeywell Technology Center (1993)

3. Mattsson, M.: Object-Oriented Frameworks: A Survey of Methodological Issues. Technical
Report, pp. 96–167, Dept. of Software Eng. and Computer Science, University of
Karlskrona/Ronneby (1996)

4. PASSI Toolkit, http://sourceforge.net/projects/ptk
5. Johnson, R., Foote, B.: Designing reusable classes. J. Object-Oriented Programming 1(2),

22–35 (1988)
6. Cubillos, C., Cabrera, D.: Towards an Agent Framework for a Passenger Transportation

Virtual Enterprise. In: 4th International Conference on Web Information Systems and Tech-
nologies, Portugal, vol. 1, pp. 292–295 (2008)

7. Fontoura, M., Pree, W., Rumpe, B.: The UML Profile Framework Architectures. Addison
Wesley, Reading (2000)

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 127–138, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Interactive Learning of Expert Criteria
for Rescue Simulations

Thanh-Quang Chu1,2, Alain Boucher2, Alexis Drogoul1,2, Duc-An Vo1,2,
Hong-Phuong Nguyen3, and Jean-Daniel Zucker1

1 IRD, UR079-GEODES, 32 av. Henri Varagnat, 93143 Bondy Cedex, France
2 AUF-IFI, MSI, ngo 42 Ta Quang Buu, Hai Ba Trung, Ha Noi, Viet Nam

3 IG-VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
thanh.quang@gmail.com, alain.boucher@auf.org
alexis.drogoul@gmail.com, vdan@ifi.edu.vn
nhphuong@netnam.vn, jdzucker@gmail.com

Abstract. The goal of our work is to build a DSS (Decision Support System) to
support resource allocation and planning for natural disaster emergencies in ur-
ban areas such as Hanoi in Vietnam. The first step has been to conceive a multi-
agent environment that supports simulation of disasters, taking into account
geospatial, temporal and rescue organizational information. The problem we
address is the acquisition of situated expert knowledge that is used to organize
rescue missions. We propose an approach based on participatory techniques, in-
teractive learning and machine learning. This paper presents an algorithm that
incrementally builds a model of the expert knowledge by online analysis of its
interaction with the simulator’s proposed scenario.

Keywords: Rescue Management, Multi-agent Simulation, Decision Support
Systems, Knowledge Extraction, Participatory Learning, Interactive Learning.

1 Introduction

In cases of post-disaster situations in urban areas, there is a need for supporting human
decision-making capacities with information technology tools. The first step in build-
ing a reliable decision-support system is to simulate the relief effort and to learn hu-
man strategies from various disaster scenarios. The devastated infrastructures and
human casualties are input as GIS (Geographical Information System) data for the
rescue simulation. Rescue teams, such as ambulances, firefighters or policemen are
modeled and simulated by agents along with their behaviors. The DSS in this case
must address two issues (Figure 1): the first is the ability to simulate different disaster
scenarios integrating all available information, coming from either GIS data or other
sources; the second is the ability to propose rescue solutions respecting the experts’
criteria.

Concerning the first issue, i.e. building a simulator for rescue teams acting in large
urban disasters, the Robocup-Rescue [13] community is proposing a multi-agent
simulation environment for urban earthquakes. The goal of the agents (representing

128 T.-Q. Chu et al.

firefighters, policemen and ambulance teams) consists in minimizing the damages
caused by the earthquake. Damages include buried civilians, buildings on fire and
blocked roads. The RoboCup-Rescue simulation environment is a useful test-bed for
evaluating cooperative multi-agent systems. However, a major problem with Ro-
boCup Rescue is its lack of support for standard GIS description, which prevents it
from being compatible with existing GIS city descriptions. We have therefore devel-
oped a specific simulation platform that we will present briefly in Section 2.

Fig. 1. The rescue simulation and the decision support systems are the results of solving the
first and second problems respectively

This paper will be mainly devoted to the presentation of our solution regarding the
second issue. In order to capture the experts’ experience and knowledge, we propose
using an original combination of participatory design and interactive learning. In this
approach, the experts are invited to interact with the simulation by trying out different
rescue scenarios and representing their decision criteria or modifying the agents’
behaviors in order to improve the realism of the whole simulation and to optimize the
relief activity.

This paper is organized as follows: Details of the first problem and its solution are
presented in section 2 with an open rescue model based on the GAMA platform (GIS
& Agent-based Modeling Architecture), an environment for implementing and run-
ning spatially explicit multi-agent simulations. In section 3, we present our solutions
for the second problem with an example of ambulance rescue activities. Section 4 is
our demonstration of the participatory design methodology and experimental protocol
that has been used in the rescue simulation for our algorithm. Finally, we arrive at
conclusions and discuss the experiments performed with various rescue scenarios for
the ambulance team in section 5.

 Interactive Learning of Expert Criteria for Rescue Simulations 129

2 Open Rescue Model Based on the GAMA Platform

2.1 The GAMA Platform

The MSI team has developed the GAMA platform based on the Repast toolbox. It is a
generic environment for experimentation that aims to provide experts, modelers and
computer scientists the necessary tools for modeling and simulating spatially explicit
multi-agent systems. The features of GAMA are: (1) the capacity for transparent use
of complex data from GIS as an environment for the agents, (2) the ability to manage
a large number of (heterogeneous) agents (3), the ability for automated and controlled
experiments (by varying automatic settings, recording statistics, etc.), (4) the possibil-
ity for non-computer scientists to develop models or to interact with agents during the
simulation execution; (5) the opportunity for modelers to easily extend available be-
havior models through the definition of a generic meta-model.

2.2 Open Rescue Model

We built a rescue simulation model on GAMA using urban GIS data from the Ba-
Dinh district in Hanoi. This urban GIS is completed with estimations coming from an
earthquake simulation model [8] (Figure 1). All GIS data is managed in the shapefile
format (an open GIS standard) using the ArcGIS tool. This model provides building
damage and casualty estimates in the observed areas.

Various levels of building damage, expressed as percentages, and casualty distribu-
tion is initialized by a semi-randomized localization method in the environment that
will support the simulation agents in the rescue model.

As long as the environment is initialized, the most important part of this exercise is
modeling the agents who will exhibit dynamic behavior in the course of the simulation.

Some agents come directly from the GIS environment. The program regards build-
ings, hospitals, emergency services etc. as agents that inherit corresponding attributes
in the GIS (location, severity of injuries, damage level, etc.). This allows modelers to
add certain dynamic behaviors such as the fire spreading through buildings, evolution
in victims’ health, evolution of building damage, the capacity of hospitals to treat
injuries, the influence of building damage on occupants, and so on.

Other agents implemented in the model are victims and rescue teams: ambulances,
firefighters or police officers (as in the Robocup-Rescue Simulation).

In the modeling process communication skills, autonomous behaviors, decision-
making and the capacity to “remember” are all included.

Figure 2 is a view of a simple simulation including fires, victims, ambulances and
firefighters. The firefighters’ goal is to extinguish the fires and the ambulances’ goal
is rescuing the injured.

This simulation result is a good example of what should be expected from the first
stage in decision support: situational awareness. The model gathers a good amount of
(static, dynamic, geophysical, social, urban, etc.) information in a unique and user-
friendly interface. This open rescue model allows the combination of GIS with multi-
agent simulations. It establishes abstract models of the relief activities that can serve
as a foundation for more realistic models.

130 T.-Q. Chu et al.

Fig. 2. Open rescue model of the Ba-Dinh district in Hanoi showing fires, victims ambulances
and firefighters

3 Interactive Learning for Rescue Simulation

3.1 Example of Rescue Decision with Ambulance’s Behaviors

The ambulance’s task is to take care of victims in its defined area. Their goal is to
provide assistance to a maximum of injured victims thusly assuring as few deaths as
possible. They must urgently perform on-the-fly first-aid, and/or transporting, with
the least delay, injured victims to hospitals. An ambulance can normally carry several
injured at the same time.

Figure 3 shows an example of an emergency situation. In this example, we assume
that the ambulance A1 (in the center of Figure 3) has access to all of the information
inherent in the situation. If A1 carries no victim, it must decide to which victim it will
provide first-aid and to take the victim to the hospital if necessary. For example, A1

may decide to go to the nearest victim V5, and then take him to hospital H2. But if A1

knows that the victim V6 is more seriously injured than V5, it could also decide to go
first to V6. It is also possible that the victims V1, V2, V3 are seriously injured and
because they are all three near one-another, the ambulance A1 may decide to go to this
group, and then to take them to hospital H2, this choice will probably save three
victims V1, V2, V3 instead of one victim V6. Another possibility can happen: if the
ambulance A1 knows that the ambulance A3 will take care of the group of victims V1,
V2, V3 and that the group of victims V9, V10, V11 are seriously injured, the ambulance
A1 may decide go to the group V9, V10, V11 and then take them to hospital H3. In this
case, the solution will probably save six victims V1, V2, V3 and V9, V10, V11 instead of
three victims V1, V2, V3.

 Interactive Learning of Expert Criteria for Rescue Simulations 131

Fig. 3. Example of a possible emergency situation. Ax represents ambulances, Vx represents
victims awaiting rescue and Hx are hospitals in the neighborhood. The red arrows link the
ambulance to its best objective. The user can change any arrow to control the objective of each
ambulance via this interactive interface.

3.2 Decision Criteria for Ambulance

The ambulance’s decision may depend on a lot of information, so decisions must
follow certain strategies to improve their relief activities. For example, after experi-
encing the above situations, the ambulance may acquire action rules as follows: the
ambulance will first look at the "hot" positions on the map, where there are more
victims who require assistance. The ambulance must take the victims’ injury severity
level into account: the more seriously injured victims should be tended to earlier. The
ambulance should not go to places where other ambulances will eventually arrive, and
so on. All of these rules are saved in the form of decision strategies for ambulances to
be used in later situations.

Normally an ambulance does not have access to all the information related to its
situation. A possible conflict can thus occur. Let us consider a situation where the
ambulance is in the process of taking one or more seriously injured victims to the
nearest hospital but is informed (by the information centre or the other ambulance via
a communication channel) that a group of victims in need of rescue was spotted right
along the road he is travelling. The decision is difficult: either go to the hospital, or go
to the group of outside victims to practice first-aid. Several criteria might be involved
in this decision, as shown in Table 1.

We have two types of criteria: criteria to maximize (+) which show that the victim
or the hospital having greater values for these criteria will have higher priority in the
ambulance’s decision process; and criteria to minimize (-) which show that the victim
or the hospital having lesser values for these criteria will have higher priority in the
ambulance’s decision process. Concerning the criteria of ambulance, for example, the
autonomy (A) has the type of (V+)(H-) designating that the victims have higher prior-
ity in the situations when the ambulance has bigger value of autonomy, and the hospi-
tals have priority if the its autonomy is small.

132 T.-Q. Chu et al.

Table 1. Decision criteria of the ambulance. The minus sign (-) indicates a criteria to minimize
while the plus (+) sign indicates a criteria to maximize.

Attributes of Criteria formula Criteria type Name
Ambulance A Autonomy(A) (V+)(H-) C1
 Min-time-to-death(A) (V+)(H-) C2
Victim V Time(A, V) (-) C3
 Time-to-death(V) (-) C4
 Time-to-nearest-other-victim(V) (-) C5
 Time-to-nearest-other-available-ambulance(V) (+) C6
 Time-to-nearest-available-hospital(V) (-) C7
Hospital H Time(A, H) (-) C3’
 Time-to-nearest-other-victim(H) (-) C5’
 Time-to-nearest-other-available-ambulance(H) (+) C6’

3.3 Expert’s Intervention in the Simulation Via Interactive Interface

Making appropriate decisions for the ambulances raises difficulties for two reasons.
Firstly, there are too many criteria involved in this decision. Secondly, each ambu-
lance only has partial knowledge about the situation (local view) at the moment of
decision-making; thus, the ambulances lack both necessary information and the
strategies to take good decisions. So, ambulances require user-intervention to make
appropriate decisions by providing supplementary information about the situation.
The user may provide their useful experience to aid in the decision, and/or they may
force the ambulance to take a particular decision with or without explanation.

We assume that ambulance agents are constrained by an initial decision strategy.
As long as the user considers the decisions taken by the ambulances optimal, s/he
need not interact. On the other hand, if the user identifies a “better” solution, s/he may
interact, by specifying or not upon which criteria he is basing his interaction. Thus,
the user can "play the role" of the ambulance by forcing a decision (to continue on to
the hospital or to stop and treat roadside victims). The objective is for the ambulance
agents to gradually acquire, by collecting enough of these couples “information to
combine-–behavior to perform” and generalizing these cases (through adapted ma-
chine learning algorithms), a decision strategy that can be reused independently in
close or similar circumstances.

Implementation of the interface between ambulances and users is necessary to en-
sure that ambulances can acquire expert knowledge during the learning process. This
provides an excellent support for both situational awareness and user action during
the course of the simulation.

For example, in figure 3, at any time, the objectives of the ambulance can be either
victims or hospitals. The red arrow links the ambulance to its best objective. The user
can pause the simulation and change the arrow to modify the objective of each ambu-
lance.

Many of the lessons learned will serve for the implementation of an actual interface
that can be used throughout the experiments with experts. The bottom line, not very
surprising in this context, is that the interface should adapt, as much as possible, to the
rhythm and needs of the user: giving him or her the possibility to change the speed of
the simulation, to zoom in and out on situations, to dynamically change the colors and

 Interactive Learning of Expert Criteria for Rescue Simulations 133

shapes of the information displayed, to hide or reveal any pieces of information, to
come back in time, etc. This appears to be a cognitive (and not simply cosmetic) ne-
cessity for the user to gain familiarity with the tool.

However, if we want to capture the knowledge mobilized in situation, we also need
the interface to be as pressing and demanding as a critical real-world context could be
imagined. Once the user is adept at manipulating the simulator, all experiments
should then take place in real-time. Since we cannot, of course, ask an expert to play
his/her role for 12 or 24 hours (as in reality), the learning sessions will be cut into
time-bounded, incremental episodes with their own goal, learning task, and time limit,
which will be presented later in the section 4.

3.4 Interactive Learning of Expert Criteria for Ambulance Decision

The idea behind the algorithm is the incremental construction of a utility function
through expert intervention. The general form of the utility function that we have
decided to consider is a weighted linear combination of criteria represented as fol-
lows:

F(Vk) = ∑ wi * Ci
k (1)

Where Vk is the kth victim; wi : the weight of the ith criteria and
Ci

k: the value of the ith criteria for the kth victim

The victim Vmin will be selected if:

F(Vmin) = Mink{F(Vk)} = Min(∑ wi * Ci
k) (2)

Vmin = ArgMin{F(Vk)} (3)

To calculate the minimum value of the utility function, the value signs of the crite-
ria to maximize are reversed. This is the case for the following criteria: Time-to-
nearest-other-available-ambulance(V), Time-to-nearest-other-available-ambulance(H).

From a simple optimization function containing only the criterion C1
k = Time(A,V)

with w1=1, we have :

F(Vk) = Ci
k (4)

As long as the user does not interact, the weights of the criteria will not be
changed. The algorithm will remember all situations with the corresponding decision.
If the user interacts and changes the objective of ambulance to Vmin, the algorithm will
adapt the criteria weight to reflect this change: either by changing the weight of crite-
ria in the function, either by adding new criteria weighted Cj in the function if no
change can satisfy (3). We have the updated function:

F(Vk) = (∑ wi * Ci
k) + wj * Cj

k (5)

The selection of the criteria Cj and the weight wj are based on the algorithm calcu-
lating hyper-volume indicator of Pareto approximation set [15].

134 T.-Q. Chu et al.

3.5 Example of the Algorithm’s Execution

To illustrate the execution of the proposed algorithm, let us come back to the situation
described in figure 3. The problem is here to identify a rescue scenario for ambulance
A1. A first set of criteria has been selected to run our preliminary experiments: see
table 1. The detailed values for each criterion are given in table 2 hereafter.

Table 2. Values of the selected criteria related to both victims and hospitals in the context of
the example described on Figure 3

Ambulance’ criteria Victims’ criteria
C1(V+) C2(V+) C3(-) C4(-) C5(-) C6(+) C7(-)

0 ∞ V1 6 14 To V2 = 1 To A3 = 5 To H2=4
0 ∞ V2 6 14 To V1 = 1 To A3 = 4 To H2=4
0 ∞ V3 7 14 To V2 = 1 To A3 = 3 To H2=5
0 ∞ V4 10 12 To V7 = 4 To A2 = 1 To H1=1
0 ∞ V5 4 18 To V1 = 6 To A3 = 10 To H2=2
0 ∞ V6 12 18 To V10 = 3 To A2 = 14 To H3=9
0 ∞ V7 8 20 To V4, V8 = 4 To A2 = 5 To H1, H3=5
0 ∞ V8 7 20 To V7 = 4 To A2 = 7 To H3=3
0 ∞ V9 9 20 To V10=0 To A2 = 12 To H3=6
0 ∞ V10 9 20 To V11=0 To A2 = 12 To H3=6
0 ∞ V11 9 20 To V10=0 To A2 = 12 To H3=6
 Hospitals’ criteria

(H-) (H-) C3’(-) C5’(-) C6’(+)
0 ∞ H1 10 ∞ 1 To A2 = 0 ∞
0 ∞ H2 2 ∞ 2 To A3 = 8 ∞
0 ∞ H3 5 ∞ 3 To A2 = 8 ∞

At the beginning, the utility function Fi (where I represents the ith iteration of the

utility function adjustment) of the ambulance A1 is initialized using the following
function:

F1(V
k) = C3

k (6)

In other words, the decision-making of an ambulance is based on the third criteria
(C3

k) which according to table 1 represents the moving time from current position to
the victims. Following this utility function, the victim V5 as the nearest victim to
rescue is thus selected (this is indicated in the user interface). At this time, an expert
may intervene to change the decision of the ambulance’s decision, forcing its goal to
switch to V1 instead. Indeed, if the ambulance A1 decides to rescue the victim V1
instead of V5. It may, afterwards, have more advantage to rescue the victim V2 ,
which lies very close to V1. Let us suppose that this is the reason why the expert made
such modification on the fly.

At this point, based on the algorithm, and because the current string of criteria do
not account for the choice of the expert, the utility function will be recomputed to
accommodate for the expert modification and an additional criteria and an associate
weight will be added. The algorithm suggests the parameter C5 and an associated
weight of 3 such that V1 becomes the primary objective: F(V1) = Min{F(Vk)}, and that

 Interactive Learning of Expert Criteria for Rescue Simulations 135

the previous decisions made by the ambulance before the intervention of the expert
remain correct in light of the new utility function. The utility function is therefore
updated to become:

F2(V
k) = C3

k + 3*C5
k (7)

It basically states that, besides the criterion related to the time to reach the victim,
the one called “time-to-nearest-other-victim” (computed for each victim) should now
be taken into account as well in the decision of the ambulance. Moreover a more
important weight is given to parameter C5

k so as to guarantee that the function is con-
sistent where previous situation.

We can see here that this procedure allows the utility function to incrementally im-
prove, and the ambulance decision will more and more reflect the experts’ choice. If
the function cannot be modified to accommodate for the expert’s decision it might be
either because the expert uses more information than the agents, or the expert is not
consistent, or that its decision cannot be captured by the function chosen. All different
outcomes may happen in our experiments.

4 Experimental Protocol and Preliminary Results

As stated above, if we want to use rescue simulations as supports in decision-making
processes, need to make them as realistic as possible, and to reflect, as much as possi-
ble, the decisions that would be taken by an expert in real situations. Most of these
decisions are a compromise between existing regulations, written rules and, perhaps
more importantly, the experience of the expert in similar situations.

Designing a process by which this latter aspect can be incorporated in the behavior
of the agents with the help of learning techniques, will not only help in building more
realistic simulations, but also increase the confidence of the expert in the support
eventually provided by the simulation.

However, in order for this process to be successful, it has to be designed very care-
fully. [16] has proposed, in a similar context, to apply methodological advices derived
from those employed in practices like participatory design or user-centered design in
order to control the experimental process by which agents can acquire knowledge
from the experts. Basically, and similarly to [16], our experiments will then rely on
three major components: (1) The design of a flexible and ergonomic user-interface
that would allow for real-time interactions between the expert and agents in the simu-
lator as we mentioned above in the section 3.3. (2) The design of an experimental
protocol composed of sessions organized around a goal, a set of learning tasks and a
set of support scenarios. (3) The design of well-thought-out scenarios based on realis-
tic conditions and corresponding to specific learning tasks and objectives.

Even when the actors are already at ease with the user interface of the simulator,
the quality of the knowledge that might be captured will strongly depend on: (a) The
commitment and motivation of the user (which is known to decrease over time); (b)
The realism of the scenarios provided and their understanding by the user; (c) The
focusing (in term of task, or goal) of the sessions during which the users will play
their role.

136 T.-Q. Chu et al.

Fig. 4. Description of multiple scenarios as incremental representations of informational
contexts of increasing complexity. In the bottom-left corner, the context only implies one am-
bulance and one hospital and therefore little information on which to base a decision. In the
top-right corner, n* indicates n agents able to communicate (for sharing information or coordi-
nating their task), which represents the most complex situation agents can face if we only take
hospitals and ambulances into account.

Therefore, a complete learning session will be organized as a succession of “epi-
sodes”, each of them being structured in the following way: (1) The task to be
fulfilled by the agents and the timeframe within which they can accomplish it (for
instance, save a maximum of victims in the minimum of time, save the most critical
victims and communicate about the others, etc.) is communicated to the user and we
make sure it is perfectly understood. Some episodes will of course share the same
task. (2) For each task, a sequence of scenarios (see below) is then chosen, ranging
from simple to complex. Each scenario will serve as a support for an “episode” of the
session, and its results (in terms of machine learning) reused for the next episode in
the sequence. (3) The set of criteria susceptible to be learnt (or ranked) during an
episode depends on the complexity provided by the scenario. For instance, in basic
scenarios, it may only contain the geographical location of the agents, while more
advanced ones might want to take their communication (information received, etc.)
into account.

There are many ways into which short-term focused scenarios could have been de-
signed. Yet, we wanted a method that would allow for the learning episodes to act as
different “layers” of increasing complexity, each of them focusing on the ranking of
its own set of criteria and using the previous ones as starting points. As the criteria
represents bits of information perceived, collected or received by the agents, we chose
to base the progression of the scenarios on that of the “informational context” that the
agents (and, therefore, the user) are facing. For instance, for a task like “locating and
carrying a maximum of victims”, in a situation where only one ambulance and one
hospital are being simulated (see figure 4), the decision of the agent will be based on a
subset of the criteria used in a situation where several ambulances (or hospitals, or
both) are present. And the criteria used in the latter situation will be themselves a
subset of those necessary to take into account if all these agents are communicating or
coordinating themselves.

 Interactive Learning of Expert Criteria for Rescue Simulations 137

Of course, the scenario’s space can grow as needed to account for other agents
(firemen, civilians, victims themselves, etc.) or criteria (communication of orders,
changes in priorities, etc.). But we have to keep in mind that (1) not all of them are
realistic; (2) no expert will be able to play them all. The path they will eventually
follow, in their session, from one episode to the other, will be different from one
expert to the other, and decided after each run through an interview with the modelers
and an evaluation of their previous interactions with the agents.

5 Conclusions

Natural disaster management in urban areas is an extremely complex problem. In this
context, we are interested particularly in the use of information technology, GIS and
multi-agent simulation tools to address the vital problem of resource allocation for
disaster response activities. Our research is intended to provide a means for building
efficient decision support systems that would be easily usable by non-computer
scientists.

There are several research projects (e.g. RoboCup-Rescue Simulation) which at-
tempt to address similar questions relying on multi-agent models to optimize the
planning of rescue teams, the combination of partial GIS and planning methods, and
so on. However, there are few works that take into account the human (and subjec-
tive) aspects of decisions made during the disaster response.

In proposing a method enabling experts to interact directly with the agents of the
simulation to teach them "good" behavior, we hope to (1) improve the realism of
these simulations (and thus improve the strategies that can be learnt/proposed), (2)
increase the confidence of decision-makers in the supporting decision tools; (3) facili-
tate training of the same decision-makers to these tools.

References

1. Özdamar, L., Yi, W.: Greedy Neighborhood Search for Disaster Relief and Evacuation
Logistics. IEEE Computer Society, Los Alamitos (2008)

2. Paquet, S., Bernier, N., Chaib-draa, B.: An Online POMDP Algorithm for Complex Multi-
agent Environments. In: AAMAS 2005, Utrecht, Netherlands (July 2005)

3. Takahashi, T.: Agent-Based Disaster Simulation Evaluation and its Probability Model In-
terpretation. In: ISCRAM 2007 (2007)

4. Suárez, S., López, B., de La Rosa, J.L.: Co-operation strategies for strengthening civil
agents’ lives in the RoboCup-Rescue simulator scenario. In: First International Workshop
on Synthetic Simulation and Robotics to Mitigate Earthquake Disaster, Workshop Padova
(2003)

5. Farinelli, A., Grisetti, G., Iocchi, L., Lo Cascio, S., Nardi, D.: Using the RoboCup-Rescue
Simulator in an Italian Earthquake Scenario. In: The program Agenzia 2000 of the Italian
Consiglio Nazionale delle Ricerche

6. Paquet, S., Bernier, N., Chaib-draa, B.: Comparison of Different Coordination Strategies
for the RoboCupRescue Simulation. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE
2004. LNCS, vol. 3029. Springer, Heidelberg (2004)

138 T.-Q. Chu et al.

7. Drogoul, A., Ferber, J.: Multi-Agent Simulation as a Tool for Modeling Societies: Appli-
cation to Social Differentiation in Ant Colonies. In: Castelfranchi, C., Werner, E. (eds.)
MAAMAW 1992. LNCS, vol. 830, pp. 2–23. Springer, Heidelberg (1994)

8. Nguyen-Hong, P.: Decision support systems applied to earthquake and tsunami risk as-
sessment and loss mitigation. In: Proceedings of IHOCE 2005, Kuala Lumpur, Malaysia
(2005)

9. Sempé, F., Nguyen-Duc, M., Boucher, A., Drogoul, A.: An artificial maieutic approach for
eliciting experts’ knowledge in multi-agent simulations. In: Sichman, J.S., Antunes, L.
(eds.) MABS 2005. LNCS, vol. 3891. Springer, Heidelberg (2006)

10. Ramesh, R., Eisenberg, J., Schmitt, T.: Improving Disaster Management: The Role of IT in
Mitigation, Preparedness, Response, and Recovery. Committee on Using Information
Technology to Enhance Disaster Management, National Research Council, Washington,
USA (2005)

11. Nguyen-Duc, M.: Vers la conception participative de simulations sociales: Application à la
gestion du trafic aérien. Thèse de doctorat de l’université de Paris 6 (2007)

12. McCallum, A.K.: Reinforcement Learning with Selective Perception and Hidden State.
PhD thesis, University of Rochester, Rochester, New-York (1996)

13. Paquet, S.: Distributed Decision-Making and Task Coordination in Dynamic, Uncertain
and Real-Time Multiagent Environments. PhD thesis, Faculté de Sciences et Génie, Uni-
versité Laval, Québec (2006)

14. Amouroux, E., Chu, T., Boucher, A., Drogoul, A.: GAMA: an environment for implement-
ing and running spatially explicit multi-agent simulations. In: 10th Pacific Rim Interna-
tional Workshop on Multi-Agents (PRIMA), Bangkok, Thailand (2007)

15. Zinflou, A.: Système interactif d’aide à la décision basé sur des algorithmes génétiques
pour l’optimisation multi-objectifs, Master thesis, Université du Québec à Chicoutimi, pp.
46–50 (2004)

16. Nguyen-Duc, M., Drogoul, A.: Using Computational Agents to Design Participatory So-
cial Simulations. Journal of Artificial Societies and Social Simulation 10(45) (2007)

Modularity in Agent Programming Languages
An Illustration in Extended 2APL

Mehdi Dastani, Christian P. Mol, and Bas R. Steunebrink

Utrecht University
The Netherlands

{mehdi,christian,bass}@cs.uu.nl

Abstract. This paper discusses a module-based vision for designing BDI-based
multi-agent programming languages. The introduced concept of modules is
generic and facilitates the implementation of different agent concepts such as
agent roles and agent profiles, and enables common programming techniques
such as encapsulation and information hiding for BDI-based agents. This vision
is applied to 2APL, which is an existing BDI-based agent programming language.
Specific programming constructs are added to 2APL to allow the implementation
of modules. The syntax and intuitive meaning of these programming constructs
are provided as well as the operational semantics of one of the programming con-
structs. Some informal properties of the programming constructs are discussed
and it is explained how these modules can be used to implement agent roles,
agent profiles, or the encapsulation of BDI concepts.

1 Introduction

Modularity is an essential principle in structured programming in general and in agent
programming in particular. This paper focuses on the modularity principle applied to
BDI-based agent programming languages. There have been many proposals for support-
ing modules in BDI-based programming languages, e.g., [1, 2, 6, 7]. In these proposals,
modularization is considered as a mechanism to structure an individual agent’s program
in separate modules, each encapsulating cognitive components such as beliefs, goals,
events, and plans that together can be used to handle specific situations. However, the
ways the modules are used in these approaches are different.

For example, in Jack [2] and Jadex [1], modules (which are also called capabili-
ties) are employed for information hiding and reusability by encapsulating cognitive
components that implement a specific capability/functionality of the agent. In these ap-
proaches, the encapsulated components are used during an agent’s execution to create
events and to generate plans that handle the events. It should be noted that Jadex extends
the notion of capability by providing an import/export mechanism to connect different
capabilities. In other approaches [6, 7], modules are used to realize a specific policy or
mechanism in order to control nondeterminism in agent execution. For example, in [6]
modules are considered as the ‘focus of execution’, which can be used to disambiguate
the application and execution of plans. In [7] a module is associated with a specific goal
indicating which and how planning rules should be applied to achieve that specific goal.

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 139–152, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 M. Dastani, C.P. Mol, and B.R. Steunebrink

In these approaches, decisions such as when and how modules should be used dur-
ing an agent’s execution are controlled by the agent’s execution strategy, usually imple-
mented in the agent’s interpreter. An agent programmer can control the use of modules
during an agent’s execution in a limited way either in terms of the functionality of those
components or through conditions assigned to the modules. For example, in Jack [2]
and Jadex [1] the interpreter searches the modules in order to determine how an event
can be processed. In [6, 7], belief or goal conditions are assigned to modules such that
an agent’s interpreter uses the modules when the respective conditions hold.

Like in other approaches, we consider a module as an encapsulation of cognitive
components. However, the added value of our approach is that an agent programmer
has more control in determining how and when modules are used. In contrast to the
abovementioned approaches, we propose a set of generic programming constructs that
can be used by an agent programmer to perform a variety of operations on modules. In
this way, the proposed notion of module can be used to implement a variety of agent
concepts such as agent role and agent profile. In fact, in our approach a module can be
used as a mechanism to specify a role that can be enacted by an agent during its exe-
cution. We also explain how the proposed notion of modules can be used to implement
agents that can represent and reason about other agents.

In order to illustrate our approach we explain in the next section an extension of
the agent programming language 2APL with modules. The syntax and operational se-
mantics of the module-based 2APL are presented and sections 3 and 4, respectively. In
section 5, we discuss how the proposed notion of modules can be used to implement
agent roles and agent profiles. Finally, in section 6, we conclude the paper and indicate
some future research directions.

2 Extending 2APL with Modules

2APL is a multi-agent programming language that facilitates the implementation of
BDI-based agents. The ‘classical’ (i.e. non-modular) version of this programming lan-
guage is presented in [3, 4]. In this paper, we extend 2APL with modules. In this exten-
sion, a 2APL multi-agent program is specified in terms of a set of modules each having
a unique name. Initially, a subset of these modules is identified as the specification of
individual agents. The execution of a 2APL multi-agent program is therefore the instan-
tiation and execution of this subset of modules. A 2APL module is an encapsulation of
cognitive components including beliefs, goals, plans, action specifications, and different
sets of rules that generate and repair plans when they are applied. A 2APL module can
create, instantiate, and process other 2APL modules. This implies that a 2APL module
can include (be specified by) other 2APL modules. There are several operations that a
module instance can perform on another one. These operations can be implemented by
means of 2APL programming constructs designed to operate on modules.

One of these operations is to create a module instance based on a declared module
in the multi-agent program. One module instance can be created by another module
instance or an agent that is initially created as an instance of a declared module. In
such a case, the creating module instance (also called the owner module instance) will
assign a unique name to the created module instance. The owner module instance is the

Modularity in Agent Programming Languages 141

only module instance that can operate on the created module instance until the created
module instance is released.

One module instance can create several instances of one and the same module, e.g.,
an instance mi of a declared module M can create instances k1, . . . , k j of another de-
clared module K. Also, two module instances can create two instances of one and the
same module, e.g., instances mi and n j of declared modules M and N can create in-
stances ki and k j of another declared module K. Finally, one and the same module in-
stance can be used by two different module instances, e.g., an instance ki of a declared
K can be used by instances mi and ni of declared modules M and N, respectively. For
this purpose, a special type of module, called a singleton module, is introduced. While
the ownership of a singleton module instance can be changed through create and release
operations performed by different module instances, the state of the singleton module
instance is invariant with respect to these operations, i.e., the state of a singleton mod-
ule instance is maintained after one module instance releases it and another one owns
it again.

The owner of a module instance can execute it in two different ways. First, the owner
can execute its owned module instance and wait until the execution of the owned in-
stance stops. In order to indicate when the owned instance stops (such that the owner’s
execution can be resumed), a stopping condition is provided as the argument of the
execution operation. This condition, which is specified in terms of the internals of the
owned module instance, is evaluated by the overall multi-agent system interpreter. Sec-
ond, an owner can execute its owned module instance in parallel to its own execution.
The execution of the owned module instance stops either by means of a stop condition
(evaluated on the internals of the owned module instance) or explicitly by means of a
stop action performed by the owner. The execute operations can be used to implement
‘focus of execution’ and goal processing as discussed in [6] and [7], respectively.

Besides executing a module instance, the internals of a module instance can be ac-
cessed by its owner module instance. In particular, an owner instance can test and up-
date the beliefs and goals of its owned module instance. In order to control the access
to the internals of a module instance, two types of modules are introduced: public and
private. A private module instance can only be executed by its owner and does not allow
access to its internals. In contrast to private modules, the internals of a public module
instance are accessible to its owner. These operations can be used to implement capa-
bilities as discussed in [1, 2]. It is worth noticing that a multi-agent system is the (only)
owner of all module instances that initially constitute the individual agents.

3 Syntax

This section presents the complete syntax of the 2APL programming language. As the
syntax of the 2APL programming language without modules is presented elsewhere
[3, 4], we here highlight the modifications and discuss only the module-related pro-
gramming constructs. The 2APL syntax for the multi-agent issues is presented by means
of a specification language. Using this specification language, one can 1) declare a set
of modules, 2) assign external environments to the modules which are then allowed to
access the assigned environments, and 3) specify the creation of individual agents as

142 M. Dastani, C.P. Mol, and B.R. Steunebrink

〈MAS Prog〉 ::= “Modules :” 〈module〉+
“Agents :” (〈agentname〉 〈moduleIdent〉 [〈int〉])+

〈module〉 ::= 〈moduleIdent〉“.2apl” [〈environments〉]
〈agentname〉 ::= 〈ident〉
〈moduleIdent〉 ::= 〈ident〉
〈environments〉 ::= “@”〈ident〉+

Fig. 1. The EBNF syntax of 2APL multi-agent systems extended with modules

instances of some of the declared modules. The syntax of this specification language
is presented in Figure 1 using the EBNF notation. In the following, we use 〈ident〉
to denote a string and 〈int〉 to denote an integer. A 2APL multi-agent program can
thus indicate which modules could be created during the execution of the multi-agent
program. This is done by the declaration of a list of module names preceded by the
keyword Modules (how the declared modules are implemented will be explained in
section 3.2). From the set of declared modules, some will initially be instantiated as
individual agents that constitute the implemented multi-agent system. The list of the
names of the agents that should be created together with their corresponding module
names and the number of to be created agents (i.e., the number of module instances
to be created) is preceded by the keyword Agents. For each agent, 〈agentname〉 is the
name of the individual agent to be created, 〈module〉 is the name of the module spec-
ification that implements the agent when it is instantiated, and 〈int〉 is the number of
agents that should to be created. When the number of agents is n > 1, then n identical
agents are created. The names of these agents are 〈agentname〉 extended with a unique
number. Finally, 〈environments〉 is the list of environment names to which the module
has access. Note that this programming language allows one to create a multi-agent
system consisting of different numbers of different agents each having access to one or
more environments.

3.1 A 2APL Example

Suppose we need to build a multi-agent system in which one single manager and two
workers cooperate to collect gold items in a simple cellular environment called block-
world. The manager coordinates the activities of the two workers by asking them either
to explore the blockworld environment to detect the gold items or to carry the detected
gold items and store them. For this example, which can be implemented as the follow-
ing 2APL program, the manager module (i.e., manager.2apl) specifies the initial state
of the manager agent with the name m (the implementation of the manager module is
explained later on). The manager module, and thus the manager agent m, can access the
database environment. Note that only one manager agent will be initialized and created
(line 7). Moreover, the worker module (worker.2apl) specifies the initial state of two
worker agents. Note that the names of the worker agents in the implemented multi-agent
system will be indexed with numbers 1 and 2, i.e., there will be two worker agents with
names w1 and w2 (line 8). Finally, two additional modules are declared to implement
the explorer and carrier functionalities (line 4, 5). As we will see later on, these func-
tionalities will be used by the worker agents. Note that both functionalities can access
the blockworld environment.

Modularity in Agent Programming Languages 143

1 Modules: // example.mas
2 manager.2apl @database
3 worker.2apl
4 explorer.2apl @blockworld
5 carrier.2apl @blockworld
6 Agents:
7 m manager
8 w worker 2

3.2 2APL Module Specification

A 2APL module, which is also used to create individual agents, is implemented by
means of a specification language. The EBNF syntax of this specification language is
illustrated in Figure 2. The gray parts of the syntax are not related to modules and are
already presented in [3, 4]. In this specification, we use 〈atom〉 to denote a Prolog-like
atomic formula starting with a lowercase letter, 〈Atom〉 to denote a Prolog-like atomic
formula starting with a capital letter, 〈ground atom〉 to denote a ground atom and 〈Var〉
to denote a string starting with a capital letter.

Although explaining the complete set of 2APL programming constructs is not the
focus of this paper, we give a brief and general idea of the basic non-module constructs.
2APL provides programming constructs to implement a module in terms of beliefs,
goals, action specifications, plans, and reasoning rules. An agent’s beliefs is a set of
Horn-clauses and represent information the agent believes about itself and its surround-
ing environments. An agent’s goals is a set of conjunctive ground atoms, where each
conjunct represents a situation the agent wants to realize. The programming language
provides different types of actions such as belief update actions (to modify beliefs), be-
lief and goal test actions (to query beliefs and goals), actions to adopt and drop goals,
to send messages, and to change the state of external environments. Besides these pro-
gramming constructs, 2APL provides constructs to implement three types of reasoning
rules. The planning goal rules (PG-rules) can be used to generate plans based on the
agent’s beliefs and goals. The procedure call rules (PC-rules) can be used to generate
plans for the received internal and external events including messages. Finally, the plan
repair rules (PR-rules) can be used to repair a plan whose execution has failed.

The first module-related construct is the use of keywords public/private and
singleton. The owner of a public module instance can both execute as well as access
the internals of the owned public module instance.1 However, the owner of a private
module instance can only execute the module instance and cannot access its internals.

The create(mod-name, mod-ident) action can be used to create an instance of
the module with the name mod-name. The name that is assigned to the created module
instance is given by the second argumentmod-ident. The owner of the module instance
can use this name to perform further operations on it. A module instance with identifier
m can be released by its owner by means of the release(m) action. If the module is not
a singleton, then its instance will be removed/lost. However, if the module is a singleton,
then its instance will be maintained in the multi-agent system such that it can be owned
by another module instance that creates it again. It is important to note that a singleton
module can only have one instance at a time such that it can always be accessed by
means of the module name mod-name. It is also important to note that the subsequent

1 Note that the owner itself can be an instance of either a public or a private module.

144 M. Dastani, C.P. Mol, and B.R. Steunebrink

〈2APL Module〉 ::= (”private” | ”public”) [”singleton”]
(”Include:” 〈ident〉

| ”BeliefUpdates:” 〈BelU pS pec〉
| ”Beliefs:” 〈belie f 〉
| ”Goals:” 〈goals〉
| ”Plans:” 〈plans〉
| ”PG-rules:” 〈pgrules〉
| ”PC-rules:” 〈pcrules〉
| ”PR-rules:” 〈prrules〉)*

〈BelU pS pec〉 ::= (”{”〈belquery〉 ”}” 〈belie f update〉 ”{”〈literals〉”}”)+
〈belie f 〉 ::= (〈ground atom〉 ”.” | 〈atom〉 ”: −” 〈literals〉”.”)+
〈goals〉 ::= 〈goal〉 (”,” 〈goal〉)*
〈goal〉 ::= 〈ground atom〉 (”and” 〈ground atom〉)*
〈baction〉 ::= ”skip” | 〈belie f update〉 | 〈sendaction〉 | 〈externalaction〉

| 〈abstractaction〉 | 〈test〉 | 〈adoptgoal〉 | 〈dropgoal〉
| 〈createaction〉 | 〈releaseaction〉 | 〈return〉 | 〈moduleaction〉

〈createaction〉 ::= ”create(” 〈ident〉 ”,” 〈ident〉 ”)”
〈releaseaction〉 ::= ”release(” 〈ident〉 ”)”
〈return〉 ::= ”return”
〈moduleaction〉 ::= 〈ident〉 ”.” 〈maction〉
〈maction〉 ::= ”execute(” 〈test〉 ”)” | ”executeasync(” [〈test〉] ”)”

| ”stop” | 〈test〉 | 〈adoptgoal〉 | 〈dropgoal〉 | 〈updBB〉
〈updBB〉 ::= ”updateBB(” 〈literals〉 ”)”
〈plans〉 ::= 〈plan〉 (”,” 〈plan〉)*
〈plan〉 ::= 〈baction〉 | 〈sequenceplan〉 | 〈i f plan〉 | 〈whileplan〉 | 〈atomicplan〉

| 〈mi f plan〉 | 〈mwhileplan〉
〈belie f update〉 ::= 〈Atom〉
〈sendaction〉 ::= ”send(” 〈iv〉 ”,” 〈iv〉 ”,” 〈atom〉 ”)”

| ”send(” 〈iv〉 ”,” 〈iv〉 ”,” 〈iv〉 ”,” 〈iv〉 ”,” 〈atom〉 ”)”
〈externalaction〉 ::= ”@” 〈iv〉”(” 〈atom〉 ”,” 〈Var〉 ”)”
〈abstractaction〉 ::= 〈atom〉
〈test〉 ::= ”B(” 〈belquery〉 ”)” | ”G(” 〈goalquery〉 ”)” | 〈test〉 ”&” 〈test〉
〈adoptgoal〉 ::= ”adopta(” 〈goalvar〉 ”)” | ”adoptz(” 〈goalvar〉 ”)”
〈dropgoal〉 ::= ”dropgoal(” 〈goalvar〉 ”)” | ”dropsubgoals(” 〈goalvar〉 ”)”

| ”dropsupergoals(” 〈goalvar〉 ”)”
〈sequenceplan〉 ::= 〈plan〉 ”;” 〈plan〉
〈i f plan〉 ::= ”if” 〈test〉 ”then” 〈scopeplan〉 [(”else” 〈scopeplan〉)]
〈whileplan〉 ::= ”while” 〈test〉 ”do” 〈scopeplan〉
〈atomicplan〉 ::= ”[” 〈plan〉 ”]”
〈scopeplan〉 ::= ”{” 〈plan〉 ”}”
〈pgrules〉 ::= 〈pgrule〉+
〈pgrule〉 ::= [〈goalquery〉] ”< −” 〈belquery〉 ”|” 〈plan〉
〈pcrules〉 ::= 〈pcrule〉+
〈pcrule〉 ::= 〈atom〉 ”< −” 〈belquery〉 ”|” 〈plan〉
〈prrules〉 ::= 〈prrule〉+
〈prrule〉 ::= 〈planvar〉 ”< −” 〈belquery〉 ”|” 〈planvar〉
〈goalvar〉 ::= 〈atom〉(”and”〈atom〉)*
〈planvar〉 ::= 〈plan〉 | 〈Var〉 | ”if” 〈test〉 ”then” 〈scopeplanvar〉 [(”else” 〈scopeplanvar〉)]

| ”while” 〈test〉 ”do” 〈scopeplanvar〉 | 〈planvar〉 ”;” 〈planvar〉
〈mi f plan〉 ::= ”if” 〈ident〉”.”〈test〉 ”then” 〈scopeplan〉 [(”else” 〈scopeplan〉)]
〈mwhileplan〉 ::= ”while” 〈ident〉”.”〈test〉 ”do” 〈scopeplan〉
〈scopeplanvar〉 ::= ”{” 〈planvar〉 ”}”
〈literals〉 ::= 〈literal〉 (”,” 〈literal〉)*
〈literal〉 ::= 〈atom〉 | ”not” 〈atom〉
〈ground literal〉 ::= 〈ground atom〉 | ”not” 〈ground atom〉
〈belquery〉 ::= ”true” | 〈belquery〉 ”and” 〈belquery〉 | 〈belquery〉 ”or” 〈belquery〉

| ”(” 〈belquery〉 ”)” | 〈literal〉
〈goalquery〉 ::= ”true” | 〈goalquery〉 ”and” 〈goalquery〉 | 〈goalquery〉 ”or” 〈goalquery〉

| ”(” 〈goalquery〉 ”)” | 〈atom〉
〈iv〉 ::= 〈ident〉 | 〈Var〉

Fig. 2. The EBNF syntax of 2APL extended with modules

Modularity in Agent Programming Languages 145

creation of a singleton module by another module instance, which may be assigned a
different name, will refer to the same instance as when it was released by its last owner.

When a public or private module m is created/instantiated, the created instance can
be executed by its owner through the action m.execute(〈test〉) or m.executeasync
([〈test〉]). The execution of a module instance by means of an execute action, per-
formed by an owner, has two effects: 1) it suspends the execution of the owner module
instance, and 2) it starts the 2APL deliberation process based on the internals of the
owned module instance. The execution of the owner module instance will be resumed
as soon as the execution of the owned module instance is terminated. The termination of
the owned module instance2 is based on the mandatory test condition (i.e., the argument
of the execute action), which is continuously evaluated by the overall multi-agent sys-
tem interpreter. As soon as this condition holds, a stop event stop! is sent to the owned
module instance. The module instance could then start a cleaning operation after which
it should broadcast a return event. For this we introduce an action return that can be
executed by an owned module instance after which its execution is terminated. The ex-
ecution of this final action broadcasts an event return! that is received by the overall
multi-agent system interpreter after which the execution of the owner module instance
is resumed. The owner agent will be notified about the return event immediately after
its execution if resumed. The return event can be used by the owner to, e.g., release the
owned module instance.

The execution of a module instance by means of the executeasync action is iden-
tical to execute action, except that the owner does not have to wait until the execution
of its owned module instance terminates. In fact, the owner continues with its own ex-
ecution in parallel with the execution of the owned module instance. The execution of
the module instance can be halted either by providing a test condition (i.e., the optional
argument of the executeasync action) or by means of the stop action performed
by the owner module instance. Like the execute action, the test will be evaluated at
the multi-agent system level and based on the internals of the module instance. The
stop action performed by the owning module instance will send the stop! event to the
owned module instance.

The owner of a public module instance can access and update the internals of the
instance. In particular, the owner can test whether certain beliefs and goals are en-
tailed by the beliefs and goals of its owned public module instance m through action
m.B(ϕ) & G(ψ). Also, the beliefs of a module instance m can be updated by means
of action m.updateBB(ϕ). A goal can be added to the goals of a module instance m
by means of m.adopta(ϕ) and m.adoptz(ϕ) actions. Finally, the goals of a module
instance m can be dropped by means of m.dropgoal(ϕ), m.dropsubgoals(ϕ) and
m.dropsupergoals(ϕ) actions. As explained in [3, 4], these actions can be used to
drop from an agent’s goals, respectively, all goals identical to ϕ, all goals that are a
logical subgoal of ϕ, and all goals that have ϕ as a logical subgoal.

3.3 Example Revisited

Given our working example, the manager module can be implemented as follows:

2 The owner cannot do this because its execution has been suspended.

146 M. Dastani, C.P. Mol, and B.R. Steunebrink

9 Private // manager.2apl
10 BeliefUpdates:
11 { carryGold(A) } Ready(A) { not carryGold(A) }
12 { not carryGold(A) } Busy(A) { carryGold(A) }
13 Beliefs:
14 worker(w1).
15 worker(w2).
16 divided(L,L1,L2) :- append(L1,L2,L), evenlySized(L1,L2).
17 Goals:
18 haveGold()
19 Plans:
20 send(w1,request,play(exp))
21 PG-rules:
22 haveGold() <- worker(A) and not carryGold(A) |
23 {@database(findGoal(A),L); if B(not L=[]) then {send(A,request,play(car,L)); Busy(A)}}
24 PC-rules:
25 message(w1,inform,gold(L)) <- divided(L,L1,L2) |
26 { [@database(addGold(L1,w1),_); @database(addGold(L2,w2),_)] }
27 message(A,inform,done(L)) <- worker(A) | { @database(removeGold(L,A),_); Ready(A) }

As illustrated, the goal of the manager m is to have gold items (line 18). Moreover,
it has one initial plan through which it sends a request to worker w1 to explore the
blockworld environment (line 20). The first PC-rule of the manager agent indicates that
when it receives a list of detected gold items (i.e., gold(L)) from worker w1, then it
divides the received list into two evenly sized lists of gold items and stores them in
its database (line 25, 26) (the manager agent could also add these lists to its beliefs,
but the aim of the example is to show the use of different environments). The second
PC-rule indicates that when a worker informs the manager that it has collected and
carried its assigned gold items to a safe depot, then the manager removes the goal items
from its database and updates its beliefs with the fact that the worker is ready to carry
new gold items (line 27). In order to achieve its goal, the manager agent checks its
database continuously to see if it has information about gold items to be collected by
one of the worker agents that is not carrying gold (note that the information about
gold items should be received from the worker agent that initially was asked to explore
the blockworld). If it can find such information (a non-empty list of gold items) in its
database, then it will send a request to the corresponding agent asking to carry the gold
items and store them safely in the blockworld. The manager agent will update its beliefs
to contain information that the agent is busy carrying gold.

28 Private // worker.2apl
29 BeliefUpdates:
30 { true } GoldInf(X) { gold(X) }
31 Beliefs:
32 manager(m).
33 PC-rules:
34 message(A,request,play(exp)) <- manager(A) |
35 { create(explorer, myexp);
36 myexp.execute(B(gold(L)));
37 send(A, inform, gold(L)); adminGold(L);
38 release(myexp) }
39 message(A,request,play(car,L)) <- manager(A) |
40 { create(carrier, mycar);
41 mycar.updateBB(gold(L));
42 mycar.execute(B(done() or error()));
43 if mycar.B(done()) then send(A, inform, done(L)) else @blockworld(reset(),_);
44 release(mycar) }
45 adminGold(L) <- true | { if B(L=[X|R]) then { GoldInf(X); adminGold(R) } }

Modularity in Agent Programming Languages 147

The worker agent is an agent that waits for requests to either explore the blockworld
environment or carry the gold items and store them. When it receives a request to ex-
plore the blockworld environment from the manager (line 34), it creates an explorer
module instance and executes it (line 35, 36). Note that the halting condition of this
module instance is the belief that gold items are detected. When the execution of the
module instance is halted, the worker agent sends the information about the detected
gold items to the manager (line 37), updates its beliefs with the information about the
detected gold items (this action illustrates the use of abstract action), and finally re-
leases the explorer module instance (line 38). The third PC-rule (line 45) implements
the execution of the abstract action adminGold(L) by going recursively through the
list of gold items and adding each of them to its beliefs. Finally, the second PC-rule of
the worker agent (line 39) is responsible for carrying gold items by creating a carrier
module instance (line 40), adding the gold item information to its beliefs (line 41), and
executing it until either it has found the gold items (done() condition) or an error has
occurred (error() condition).

46 Public // explorer.2apl
47 BeliefUpdates:
48 { gold(L) } Finish() { not gold(L) }
49 { true } Detected(L) { gold(L) }
50 Beliefs:
51 foundGold() :- gold(_).
52 Goals:
53 foundGold()
54 PG-rules:
55 foundGold() <- true | { @blockworld(sensegold(),L); Detected(L) }
56 PC-rules:
57 event(stop) <- true | { Finish(); return }

The explorer module, which is a public module, has the goal to find gold items
(line 51). In order to achieve this goal, it performs a sense gold action in the blockworld
and adds the information about the detected gold items (i.e., gold(L)) to its beliefs (line
55). Note that this belief information is the halting condition of the module instance. In
this example, the final PC-rule (line 57) is to react to the stop event that is broadcasted
by the platform when the explorer’s stopping condition holds. The reception of this
event causes a clean-up operation to be performed by deleting all information about
gold items from its beliefs and performing a return action. This return action causes the
execution to be handed back to the worker module. Note that the goal foundGold() is
achieved as soon as gold(L) is added to its beliefs.

58 Public // carrier.2apl
59 BeliefUpdates:
60 { gold([X|R]) } Remove(X) { not gold([X|R]), gold(R) }
61 { gold(X) } Finish() { not gold(X) }
62 { true } Done() { done() }
63 { true } Error() { error() }
64 Goals:
65 goldStored()
66 PG-rules:
67 goldStored() <- gold([X|R]) |
68 { @blockworld(pickUpGold(X),_); @blockworld(storeGold(X),_); Remove(X) }
69 goldStored() <- gold([]) | { Done() }
70 PC-rules:
71 event(stop) <- true | { Finish() ; return }
72 PR-rules:
73 @blockworld(pickUpGold(E),_);X <- true | { Error() }

148 M. Dastani, C.P. Mol, and B.R. Steunebrink

Finally, the carrier module (also a public module) has a goal to store a list of gold
items safely. This goal can be achieved by picking one gold item from the list, store
it in a blockworld depot, and remove that gold item from the list of stored gold items.
Note the use of two PG-rules (lines 67 and 69) to handle empty and non-empty lists of
gold items. Similar to the explorer module, the carrier module does a clean-up operation
and performs the return action when it receives a stop event (line 71). The plan repair
rule (line 73) adds error information (i.e., error()) to its beliefs when the execution
of the pickUpGold action in the blockworld environment fails. Note that error() in
the beliefs was one of the halting conditions to stop the execution of the carrier module
instance. It is also important to note that it is up to the blockworld programmer to
determine when the execution of the pickUpGold action fails.

4 Semantics

The semantics of 2APL is defined in terms of a transition system, which consists of
a set of transition rules for deriving transitions. A transition specifies a single com-
putation/execution step by indicating how one configuration can be transformed into
another. In this paper, we first present the multi-agent system configuration, which con-
sists of the configurations of individual agents and the state of the external shared envi-
ronments. Then, due to space limitation, we present only one transition rule to illustrate
how a multi-agent system transition (an execution step) can be derived. Here, we do
neither present the configuration nor the transitions rules for individual agents. Else-
where [4] we have presented the semantics of 2APL without modules. The execution
of module-related programming constructs affect mainly the multi-agent system con-
figuration. The only effect of the module-related actions at the individual agent level is
that these actions are removed from the agent’s plans upon execution. It is important to
note that individual agent transitions are used as conditions of the multi-agent system
transition rules.

The configuration of a multi-agent system is defined in terms of the configuration of
modules instances (including agents) and the state of the external environments. The
configuration of a module instance includes 1) an instance of the module (consisting of
beliefs, goals, plans, events, and reasoning rules) with a unique name, 2) the name of
the (parent) module that has created the module instance, 3) the identifier of the module
specification,3 4) a flag indicating whether the module instance is executing, and 5) the
stopping condition for the module instance. Finally, the state of a shared environment
is a set of facts that hold in that environment.

Definition 1 (multi-agent system configuration). Let (Ai, p, r, e, ϕ) be a module con-
figuration, where Ai is a module instance with the unique name i, p is the name of the
owner of the module instance, r is an identifier referring to the module specification, e
is the execution flag, and ϕ is the execution stopping condition. LetA be a set of module
configurations and χ be a set of external environments, each a consistent set of atoms
〈atom〉. The configuration of a 2APL multi-agents system is then defined as 〈A, χ〉.

3 Note that there may be several instances of a module specification in a multi-agent system.

Modularity in Agent Programming Languages 149

The initial configuration of a multi-agent system consists of the initial configuration of
its individual agents and the initial state of the shared external environments as specified
in the multi-agent program. The initial configuration of each individual agent is deter-
mined by the module that is assigned to the agent in the multi-agent program. The initial
state of the shared external environment is set by the programmer, e.g., the programmer
may initially place gold at specific positions in a blockworld environment.

In particular, for each individual agent implemented as (i : m N) (which is pre-
ceded by the keyword Agents:) in the multi-agent program, N module/agent instances
(Ai1 , mas,m, t,⊥) , . . . , (AiN , mas,m, t,⊥) are created and added to the set of module
instances A. Also, all environments that are assigned to a module in the multi-agent
program are initialized and collected in the set χ. Note that all module instances that
are created when the multi-agent program is initialized have mas as parent, t (true) as
execution flag, and ⊥ as stopping condition.

The execution of a 2APL multi-agent program modifies its initial configuration by
means of transitions that are derivable from transition rules. In fact, each transition rule
indicates which execution step (i.e., transition) is possible from a given configuration.
It should be noted that for a given configuration there may be several transition rules
applicable. An interpreter is a deterministic choice of applying transition rules in a
certain order.

Due to space limitation, we will present here only the transition rule for the cre-
ation of a non-singleton module. For the complete presentation of the formal semantics
see [5].

In this transition rule, which is presented below, we use Ai
α!−→ A′i to indicate that the

module instance configuration Ai can make a transition to module instance configura-
tion A′i when its execution results in the performance of action α (and thus broadcasting
event α!). Finally, we assume that singleton(r) holds if and only if the module r is a sin-
gleton module.

(Ai, p, r′, t, ϕ) ∈ A & Ai
create(r,n)!−→ A′i & ¬singleton(r) &

¬∃r′′, e, ϕ′ : (Ai.n, i, r
′′, e, ϕ′) ∈ A

〈A, χ〉 −→ 〈A′, χ〉 (1)

whereA′ = (A \ {(Ai, p, r′, t, ϕ)}) ∪ {(A′i , p, r′, t, ϕ), (Ai.n, i, r, f,⊥)}.
The transition rule indicates the effect of the create(r, n) action performed by the

execution of module instance Ai (the owner module instance), where r is the identifier
of a non-singleton module specification (of which an instance should be created), and
n is the name that will be assigned to the created module instance. This transition rule
requires that the owner module instance i is in the execution mode (i.e., the execution
flag equals t) and that there is no module instance with the same name already created
by the same module (i.e., ¬∃r′′, e, ϕ′ : (Ai.n, i, r′′, e, ϕ′) ∈ A). The result is that the set
of modules A is modified and extended. In particular, the creating module instance is
modified as it has performed the create action and the newly created module instance
is added to the multi-agent system configuration. Note that the newly created module is
not in execution mode (i.e., the execution flag equals f) and its stopping condition is set
to falsum ⊥. Note also that the stopping condition will be changed when the module is
executed.

150 M. Dastani, C.P. Mol, and B.R. Steunebrink

5 Roles, Profiles, and Task Encapsulation

The proposed module extension of 2APL is general enough to be useful for the imple-
mentation of several agent-oriented programming topics. These include the implemen-
tation of agent roles, agent profiles, and encapsulation of cognitive attitudes.

5.1 Agent Roles

The run-time creation and execution of a module instance can be used to implement the
activation and enactment of a role. The module specification should then be considered
as the specification of the role. In particular, the action create(role, name) can be seen
as the activation of a role, by which the activating agent (owner) acquires a lock on
the activated role, i.e., it becomes the role’s owner and gains the exclusive right to
manipulate the activated role. Note that when the role has been declared as singleton,
this property of locking is important, because other agents cannot acquire the role as
well. If role is not singleton, the role is created new and private to the creating agent
anyway. Upon releasing a singleton role, the role is not deleted but retained with a blank
owner, so that another agent may activate (using create(role, name′)) and use it.

An agent that has successfully performed the action create(role, name) is the owner
of role and may enact this role using name.execute(ϕ), where ϕ is a stopping condi-
tion, i.e., a composition of belief and goal queries. The owner agent is then put on hold
until the role satisfies the terminating condition, at which point control is returned to the
owner agent. Alternatively, the role may be executed using name.executeasync(ϕ),
meaning that role will run parallel to the owner agent. Note that supplying as terminat-
ing condition ϕ = ⊥ means that the role can only be stopped by executing name.stop,
which of course is only possible if the role was enacted using executeasync. In prin-
ciple, it is allowed for a role to activate and enact a new role, and repeat this without
(theoretical) depth limits. However, this is usually not allowed in literature on roles. But
it is up to the programmer to prevent roles from enacting other roles.

5.2 Agent Profiles

An agent can easily create and maintain profiles of other agents by creating
non-singleton module instances. For example, assume agent bas executes the actions
create(profile template, chris) and create(profile template,mehdi), i.e., it uses a sin-
gle template (specified as being public) to initialize profiles of the (hypothetical) agents
chris and mehdi. These profiles can be updated by bas using e.g. chris.updateBB(ϕ)
and mehdi.adoptgoal(κ) when appropriate. bas can even ‘wonder’ what chris would
do in a certain situation by setting up that situation using belief and goal updates on
chris and then performing chris.execute(ϕ) (or executeasync) with a suitable stop-
ping condition ϕ. The resulting state of chris can be queried afterwards to determine
what chris ‘would have done’.

5.3 Task Encapsulation

Modules can also be used for the common programming techniques of encapsulation
and information hiding. Modules can encapsulate certain tasks, which can be

Modularity in Agent Programming Languages 151

performed by its owning agent if it performs an execute action on that module in-
stance. Moreover, a module that has been declared to be private cannot be modified
(e.g. by updateBB) by its owning agent. Such a module can thus hide its internal state
and keep it consistent for its task(s). An important difference between creating a mod-
ule (in the sense proposed here) and including a module (in the sense of [1, 2]) is that
the contents of an included module instance are simply added to the including agent,
whereas the contents of a created module instance are kept in a separate scope. So when
using the create action, there can be no (inadvertent) clashes caused by equal names
being used in different files for beliefs, goals, actions, and rules.

6 Conclusions and Future Work

In this paper we have introduced a mechanism to implement modules in BDI-based
agent programming languages. We have illustrated this mechanism by extending the
syntax and (operational) semantics of 2APL with transition rules for module-related
actions that allow module instances to be created, executed, queried, modified, and to
be released again. Each module instance is allowed to create other modules, and so on,
up to a (theoretically) unlimited depth. Furthermore, by using the public/private and
singleton flags in the specification of a module, the programmer can use these modules
for common programming techniques such as data hiding and singleton access. We
have also shown how modules can be used to facilitate the implementation of notions
relevant to agent programming; namely, the implementation of agent roles and agent
profiles. We intend to provide a proof of concept of the proposed extension by imple-
menting the presented operational semantics in the current 2APL platform. It should
be noted that modularity in programming languages is not new. Our proposed notion
of modules is inspired on the concepts found in many languages, particularly object
oriented languages. As a consequence some properties are the same, e.g. modules have
an owner, which dictate the life cycle of the module. Also a module is designed with a
particular task in mind, hiding the detail for the owner.

For future work, there are several extensions to this work on modularization that can
make it more powerful for encapsulation and implementation of roles and agent pro-
files. First, the execute and executeasync actions may not be entirely appropriate
for the implementation of profile execution, i.e., when an agent wonders “what would
agent X (of which I have a profile) do in such and such a situation?”. This is because
executing a profile should not have consequences for the environment and other agents,
so a module representing an agent profile should not be allowed to execute external
actions or send messages. Second, the notion of singleton can be generalized by intro-
ducing the possibility of specifying a minimum and maximum amount of instances of
a module that can be active at one time. This can be used for ensuring that, e.g., there
must always be three to five agents in the role of security guard. Third, new actions add
and remove can be introduced that accept as arguments a module instance and a plan
or rule, so that all types of contents of 2APL module instances can be modified during
runtime. In particular, by creating an empty module instance and using add actions,
modules instances can be created from scratch with custom components available at
runtime.

152 M. Dastani, C.P. Mol, and B.R. Steunebrink

References

1. Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the Capability Concept for Flexible BDI
Agent Modularization. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.)
PROMAS 2005. LNCS, vol. 3862, pp. 139–155. Springer, Heidelberg (2006)

2. Busetta, P., Howden, N., Ronnquist, R., Hodgson, A.: Structuring BDI Agents in Functional
Clusters. In: Jennings, N., Lesperance, Y. (eds.) ATAL 1999. LNCS, vol. 1757, pp. 277–289.
Springer, Heidelberg (2000)

3. Dastani, M.: 2APL: A practical agent programming language. International Journal of Au-
tonomous Agents and Multi-Agent Systems (JAAMAS) 16(3), 214–248 (2008)

4. Dastani, M., Meyer, J.-J.: A practical agent programming language. In: Dastani, M., El Fallah
Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS, vol. 4908. Springer,
Heidelberg (2008)

5. Dastani, M., Mol, C.P., Steunebrink, B.R.: Modularity in Agent Programming Languages: An
Illustration in Extended 2APL. Technical Report UU-CS-2008-022, Department of Informa-
tion and Computing Sciences, Utrecht University (2008)

6. Hindriks, K.: Modules as policy-based intentions: Modular agent programming in goal. In:
Dastani, M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS,
vol. 4908. Springer, Heidelberg (2008)

7. van Riemsdijk, M.B., Dastani, M., Meyer, J.-J.C., de Boer, F.S.: Goal-Oriented Modularity in
Agent Programming. In: Proceedings of AAMAS 2006, pp. 1271–1278 (2006)

On the Pheromone Update Rules of Ant Colony
Optimization Approaches for the Job Shop

Scheduling Problem

Dong Do Duc1, Huy Q. Dinh2,3, and Huan Hoang Xuan1

1 Department of Computer Science, College of Technology,
Vietnam National University, Hanoi, 144 Xuan Thuy, Hanoi, Vietnam
2 Gregor Mendel Institute of Molecular Plant Biology, Vienna, Austria

3 Center for Integrative Bioinformatics Vienna, Vienna, Austria
dongdoduc@yahoo.com, huy.dinh@gmi.oeaw.ac.at, huanhx@vnu.edu.vn

Abstract. Ant Colony Optimization (ACO) system is an intelligent
multi-agent system of the interacting artificial ants to solve the com-
binatorial optimization problems. Applying ACO approach in the typ-
ical NP-hard problem like job shop scheduling (JSS) problem is still
an impressive and attractive challenge with the community. This paper
proposes two improvements of ACO algorithm based on the convergence
property of pheromone trails. Our improvements are better in both terms
of accuracy and running time than the state-of-the-art Max-Min ant sys-
tem by the simulation with the standard data sets.

Keywords: Ant colony optimization algorithm, job shop scheduling
problem, ACO convergence.

1 Introduction and Related Work

Ant Colony Optimization (ACO), firstly introduced in [1] as an efficient algo-
rithm for traveling salesman problem [2] as well as a meta-heuristic framework
for combinatorial optimization problems [4] , is one of the most recent approaches
to solve the NP-hard problems motivating from the foraging mechanism of real
ant colonies. Each ant leave a chemical substance (so-called pheromone trail) on
the ground during finding the path from their nest to food source and vice versa.
And the ants follow the path with pheromone trails and eventually concentrate
on the shortest one. In ACO, they used the artificial ants as the intelligent agents
together with the combination of the existed heuristic information of the solving
problem and the reinforcement of ants’ associated pheromone trails [8].

The interacting communication between the ants via the pheromone trails
during the simultaneously search of shortest paths is the reason why ACO sys-
tem performs as a multi-agent system. Almost all applications in ACO ([4] and
references therein) have shared a pipeline: converting the considering problem to
the shortest path problem over a given weighted graph, defining the correspond-
ing pheromone trails and following the way in the first application to solve the

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 153–160, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

154 D. Do Duc, H.Q. Dinh, and H.H. Xuan

traveling salesman problem [2]. The ACO algorithms can be divided into three
classes: Ant System(AS, [2]), Ant Colony System (ACS, [3]) and Max-Min Ant
System (MMAS, [5]). Two later ones are the extensions of the first one with
two different ways to update the pheromone intensities during the search for the
shortest path of every ants.

Job shop scheduling (JSS) problem is one of the long-existed scheduling prob-
lems in the literature [11]. Studying this problem in the context of ACO started
in [9] with the original Ant System algorithm. And the result, where the 6-job,
6-machine problem was investigated, is limited. JSS is a type of problem hav-
ing poor heuristics for applying ACO, then we want to mainly investigate the
pheromone trail behaviors, and control the suitable ACO parameters for this
such special type of scheduling problem.

This paper gave the property of the pheromone trail convergences and pro-
posed the new update rules for the job shop problem. Although the convergences
of ACO algorithms have been investigated in[6], their results do not help much
in real problem. The most recent paper [7] analyzed the convergence properties
when the loop t→∞, and the result still did not show the insight of convergence
behaviors that can help to control the pheromone trail updates. In this paper, we
are motivated from the behavior of the convergence of pheromone trails on the
edges not belonged to the best solution from a specific loop T . This such property
suggested the improvements of the existed pheromone update rules for applying
ACO in JSS problem and the simulation results confirmed the efficiency.

2 ACO Framework for JSS Problem

2.1 Description of JSS

This problem is denoted by a standard model n/m/G/Cmax, where G indi-
cates that jobs are connected to the technological production rules that de-
scribes their implementation order of machines. For example, a below T matrix

T =
(

M1 M2 M3
M2 M3 M1

)
where a row represents the jobs and indicates the order of

machines to be scheduled, each element of matrix T represents a specific opera-
tion. And the processing time of each operation can be represented as a following

matrix P =

⎛
⎜⎜⎝

t(O11) ... t(O1m)
...

t(O21) ... t(O2m)
t(On1) ... t(Onm)

⎞
⎟⎟⎠ where Oij indicates that the operation j of

job i will be implemented by machine Tij , and t(Oij) is the corresponding imple-
mentation time. Then, a job shop problem can be represented as a pair (T, P).
The parameter Cmax is minimum make-span of the job shop that considered as
an objective function for the machine scheduling problem.

2.2 Solution Construction

[2] proposed an idea to define the n-job, m-machine JSS problem as a graph for
ACO. Using the matrix T described above, a graph is constructed as followed:

On the Pheromone Update Rules of ACO Approaches for the JSS Problem 155

the nodes represent the operations given in the T matrix, and the set of edges
can be divided into two classes: the unidirectional horizontal edges, connected
by the nodes of the same job, represent the technological order of processing
a job and the bidirectional edges indicate other possibilities of a ant to make
decision for choosing the next node in its path. Hence, the feasible schedule is
the path from the starting node along the graph and visit all nodes, horizontally
(the maximum number of nodes for a graph is (n∗m)+1). Afterward, a solution
of each ant will be mapped onto a feasible machine schedule by implementing
the operations sequentially. And the condition for implementing a operation
is : the previous operations in the same job were done and the corresponding
machine is free at that time. For illustration (see Fig.1), we give an example of

Fig. 1. An example of the 2/3/G/Cmax job shop problem and one feasible solution
built from ACO algorithms

the 2/3/G/Cmax job shop so that we have 6 operations Oij , i = 1, 2; j = 1, 2, 3
and the mentioned matrix T represents the machinery order for each job at
each row. The artificial node O indicates the starting node of the ant. The
unidirectional edges here described the order of the operations which need to be
implemented (e.g O11 have to be implemented before the O12), the bidirectional
edges showed the other ability of choosing the next node for each ant from the
current node like mentioned above. The curve arrows showed one path of the ant
O11 → O21 → O12 → O13 → O22 → O23. We can see from that solution, the
machines implement the operation O11, O21 are machine 1 and 2, respectively.
And the operation O12 is implemented by machine M2, after the O11 and O21.
This such graph structure was efficiently implemented with AS system in [9].

2.3 Pheromone Trail and Heuristic Information

Each edge with the corresponding pair (τij , dij) representing its amount of
pheromone trail and the heuristic distance between its nodes. Here, the very
simple heuristic information - the processing time of the operation of node j can
be used as a heuristic distance for edge (i, j). The heuristic distance value can
be easily looked up in the P matrix.

156 D. Do Duc, H.Q. Dinh, and H.H. Xuan

3 Convergence Property and Improvements of ACO

3.1 Convergence Property for Pheromone Trails

Pheromone update rules in ACO. Almost all the pheromone update rules
in ACO based on two typical rules of ACS and MMAS system using the max-min
rule for constraining the pheromone trails in both.

ACS-based rule. The rule consists of both local and global update rule. The
pheromone trails are locally updated when an ant goes through the edges, fol-
lowing:

τui,ui+1(t + 1)← (1− ρ)τui,ui+1(t) + ρτ1 (1)

where τui,ui+1 indicates the value of pheromone trail associated on the edge
(ui, ui+1), ρ < 1 is a positive coefficient representing the so-called evaporation
ratio according to a certain time, τ1, usually greater than the initial value τ0 is a
pre-defined positive constant. At the end of each iteration, the pheromone trails
belonged to the best solution w(t) and the others will be globally updated by
following rule

τui,ui+1(t + 1) =
{

(1− ρ)τui,ui+1(t) + ρg(w(t)) (ui, ui+1) ∈ w(t)
τui,ui+1(t) otherwise (2)

where g(w(t)) is the objective value of the solution w(t)

MMAS-based rule. After each ant completed building a solution, the pheromone
trails are updated at each loop following :

τui,ui+1(t + 1)← (1− ρ)τui,ui+1(t) + ∆ui,ui+1 (3)

where

∆i,j =
{

ρg(w(t)) (ui, ui+1) ∈ w(t)
max{τ1 − (1− ρ)τui,ui+1(t), 0} otherwise (4)

where w(t) can be either the iteration-best solution or best-so-far solution, and
g(w(t)) is the value of objective function of the solution w(t).

Convergence property of pheromone trails. [7] used the stochastic process
for investigating the convergence properties of τij when t → ∞. But it can not
help much for application, then we showed that the behavior of pheromone trails
will follow the below property from the loop T . Assume that an edge (ui, ui+1)
belongs to and admissible solution and there exists T such that (ui, ui+1) /∈ w(t)
for all t � T . We have the following:

(i) In the ACS-based rule, τui,ui+1(t) converges in probability to τ1;
(ii) In the MMAS-based rule, τui,ui+1(t) = τ1 for all t satisfying t > T + ln(τ1/g∗)

ln(1−ρ)
where g∗ = f(s) with f(s) is the objective function value of an arbitrary
solution belonged to previous iterations.

Based on the bounds in the above property, we proposed the new update rules
following some quantitative insights into the pheromone behaviors. And they are
especially verified with JSS problem by experimental results.

On the Pheromone Update Rules of ACO Approaches for the JSS Problem 157

3.2 The Improvements for JSS Problem

Balance of intensification and diversification. For the type of problem
which has lack of heuristic information like job shop problem, if the difference
of τmin and τmax is large, the pheromone trails on “good”may decrease to τmin

so fast by chance. These edges should give the chance to be chosen by making
τmin and τmax closer. Then we choose the ratio 1/2 for τmin/τmax to increase
diversification ability for the ACO algorithms. The reason why is that when we
want to apply ACO to solve the JSS problem, the reinforced information from the
pheromone trails is mainly focused on instead of the poor heuristic information.
The search of ants will be the random search when this such ratio is approached
to 1. With this such type of problem, we believe that the diversification and
intensification is more balanced thanks to the suitable chosen τmin/τmax ratio
and the scaling parameters α and β for the probability to choosing the next node
of ants (see [2]).

Extension of MMAS-based rule. The so-called smooth MMAS system (SM-
MAS) is proposed following the below update rule:

τui,ui+1(t + 1) = (1− ρ)τui,ui+1(t) + ρ∆ui,ui+1 (5)

where

∆ui,ui+1 =
{

τmax (ui, ui+1) ∈ w(t)
τmin otherwise (6)

With the job shop problem, we realized that MMAS update rules will let the
pheromone trail at the ”bad” edges to τmin fast although these edges may be
potential for further solutions. We chose SMMAS with the pheromone update
rule described above for letting the pheromone trail values of the such ”bad”
edges slowly decrease. And in the simulation, the running time is decreased
because we do not need to control the pheromone trail values when they are not
belonged to the interval [τmin, τmax].

Extension of ACS-based rule. [3] proposed the ACS to improving the search
performance by adding the local update rule. However, this approach does not
escape the bad solution space during the search although the diversification is
enhanced by setting up the interval [τmin, τmax] for the pheromone intensity val-
ues. Then, multi-level ant system approach [8] (MLAS) is proposed to address
by increasing τmid and τmax for balancing the random search and the reinforce-
ment from the pheromone trails. The MLAS algorithm can be considered as an
extension of SMMAS in which we removing the evaporation process for the edges
which is not visited by ants for a long time. The efficiency was proved by the
experimental results with traveling salesman problem [8]. In job shop problem,
we used the middle bound τmid is permanently kept as 1/2τmax for guaranteeing
the suitable balance of intensification and diversification as mentioned above.
We do not use the parameter τmin because the pheromone trails on all edges
are initialized by τmax. Then, the parameters τmid and τmax will control the the
pheromone update as below:

158 D. Do Duc, H.Q. Dinh, and H.H. Xuan

– Online update : the pheromone trails belonged to the path of ants will be
updated as follow

τui,ui+1(t + 1) = (1− ρ)τui,ui+1(t) + ρτmid (7)

– Offline update : the pheromone trails belonged of the path of the best-so-far
ants will be updated as follow

τui,ui+1(t + 1) = (1 − ρ)τui,ui+1(t) + ρτmax (8)

Although the balance of the intensification and the diversification can be con-
trolled by adjusting the τmid/τmax ratio [8]. The experimental result (in the next
section) will show the efficiency of this pheromone update rule although it is not
easy to control and adjust the mentioned ratio.

Complexity. All of three considered algorithms implement nc loops, at each
loop there are k ants simultaneously find the their own solution. And with the
described graph, one ant will consequently visits n ∗ m nodes where n is the
number of jobs and m is the number of machines in job-shop scheduling problem.
Therefore, each algorithm need at least O(nc ∗ k ∗m ∗n). The MMAS algorithm
needs O(n ∗m)2 for the evaporation, and the same time for removing the edges
whose pheromone intensity value is not belonged to the interval [τmin, τmax].
Hence, the complexity of MMAS system for job-shop scheduling is O(nc ∗ (k ∗
m∗n+(n∗m)2)). Our smooth MMAS theoretically has the same complexity with
the MMAS, but it is faster in simulation thanks to not having the evaporation for
the edges after ants visited. And the MLAS algorithm does not need neither the
evaporation for the edges nor the running for removing the unnecessary edges,
then this algorithm have the best complexity with only O(nc ∗ k ∗m ∗ n).

4 Experimental Results

We used ten the benchmark data sets for 10-machine and 10-job problem [11].
[10] claimed that there is no approximate algorithm for solving JSS problem
which always output the result less than 5/4 of the optimal result. It meant 5/4
the optimal solution is the target of the heuristic approaches for this class of
such problems, and the efficient algorithms should give the result around that
criterion.

The out-performance in runtime complexity with our improvements is verified
with the experimental results with the same benchmark data sets described
above. For the fair comparison, we chose the same parameters for all considered
algorithms : the evaporation rate ρ = 0.01, the number of run loops is nloop =
50000, the number of used ant agents is nant = 10, and two scaling parameters
α = 1.0 and β = 0.4 for the probability of each ant to choose the next node in
the graph. And we set the ratio 1/2 for τmin/τmax for all compared algorithms
as discussed above (with MLAS, τmin is replaced by τmid). And to emphasize
the impacts of the pheromone update rules in ACO, we do not use any local

On the Pheromone Update Rules of ACO Approaches for the JSS Problem 159

Table 1. Comparison in term of best result, where Opt is optimal result known in
advance, MMAS stands for the Max-Min Ant System algorithm, SMMAS is our smooth
Max-Min Ant System algorithm and MLAS is our multi-level ant system algorithm.
The number at first columns stand for the corresponding benchmark tests Orb1, ...,
Orb10 [11]. The number in the brackets indicates the percentage difference of the result
of each specific algorithm from the 5/4 optimal result, we have the better result with
the negative numbers. The in-bold result is the best result among three compared
algorithms.

No. 5/4Opt MMAS SMMAS MLAS
1 1323.8 1340(1.2) 1368(3.3) 1329(0.4) 1363.3(3.0) 1328(0.3) 1357.8(2.6)
2 1110 1093(-1.5) 1127.8(1.6) 1090(-1.8) 1117.4(0.7) 1094(-1.4) 1121.2(1.0)
3 1256.3 1309(4.2) 1348.5(7.3) 1301(3.6) 1348.2(7.3) 1322(5.2) 1336.7(6.4)
4 1256.3 1248(0.5) 1297.2(3.3) 1224(-0.7) 1291.2(2.8) 1248(-0.7) 1291.6(2.8)
5 1108.8 1078(-2.8) 1118.3(0.9) 1086(-2.1) 1105.4(-0.3) 1086(-2.1) 1104.5(-0.4)
6 1262.5 1281(1.5) 1344.4(6.5) 1304(3.3) 1332.2(5.5) 1281(1.5) 1329.3(5.3)
7 496.3 510(2.8) 514.7(3.7) 509(2.6) 513.4(3.4) 498(2.3) 509(2.6)
8 1123.8 1179(4.9) 1189.9(5.9) 1128(0.4) 1173.8(4.4) 1150(2.3) 1164.7(3.6)
9 1167.5 1168(0.0) 1198.3(2.6) 1144(-1.7) 1195.6(2.4) 1169(0.1) 1190.1(1.9)
10 1180 1194(1.2) 1228.1(4.1) 1177(-0.3) 1207.1(2.3) 1187(0.6) 1219.9(3.4)

search for all of three compared algorithms. We also calculate the differences
between the 5/4 optimal result and the result of each algorithm to show the
efficiency of these compared methods in the general context. Table 1 represents
the experimental results of all compared algorithms for the data sets described
above. With each method, we have two values : the best so-far result and the
average result. Our improved algorithms is outperformed in almost cases (except
the data set Orb5, and have the same result with the existed MMAS in Orb6).
The smooth MMAS have the best result in 6 over 10 data sets. Because ACO
algorithm class is meta-heuristic framework, then the best result do not always
guarantee for evaluating the results of proposed methods. Average results give us
the more sensitive comparison. And in this sense, the improved system is totally
better than the MMAS. And the multi-level system is outperformed in 7 out of
10 cases while the SMMAS is only for 3 data sets. This result suggested us to
used both methods depending on the specific purpose. Actually, the ratio 1/2
for τmid/τmax is not really good control for pheromone trail update in MLAS.
The balance between the random search and reinforcement from the pheromone
trail information would be better if we have a more flexible control, but it is not
easy to do for all problems [8].

5 Conclusion

Recent studies and applications in ACO do not show any insight into the speed
of convergence properties for class of ACO algorithms. Hence, the performance
of applications are still limited. Our papers gave some properties that showed
the behavior of pheromone trail intensity at a specific loop. They are really

160 D. Do Duc, H.Q. Dinh, and H.H. Xuan

useful for applications. We verified the mathematical results in a typical type of
JSS problem where the experimental results showed the efficiency besides our
better complexity. Application of ACO in the general combinatorial optimization
problems is still attractive. And our proposed improvements have a suggestion for
obtaining the better results in solving the combinatorial optimization problems
although adjusting the parameters still depending on the way to choose the
pheromone trail and the type of heuristic information for each specific problem.

References

1. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Po-
litechnico di Milano, Italy, Tech. Rep. 91–106 (1991)

2. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. The IEEE Transactions on Systems, Man and Cybernetics,
Part B 26(1), 29–41 (1996)

3. Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach
to the traveling salesman problem. The IEEE Transactions on Evolutionary Com-
putation 1(1), 53–66 (1997)

4. Dorigo, M., Di Caro, M.: Ant colony optimization: a new metaheuristic. In: The
1999 Congress on Evolutionary Computation (CEC 1999), vol. 2, pp. 6–9 (1999)

5. Stutzle, T., Hoos, H.: MAX-MIN ant system. The Future Generation Computer
Systems 16(9), 889–914 (2000)

6. Stutzle, T., Dorigo, M.: A short convergence proof for a class of ant colony opti-
mization algorithms. The IEEE Transactions on Evolutionary Computation 6(4),
358–365 (2002)

7. Gutjahr, W.J.: Mathematical runtime analysis of ACO algorithms: survey on an
emerging issue. Swarm. Intell. 1, 59–79 (2007)

8. Huy, D.Q., Dong, D.D., Huan, H.X.: Multi-level ant system - a new approach
through the new pheromone update for ant colony optimization. In: The 2006
IEEE Conference on Research, Innovation and Vision for the Future, pp. 55–58
(2006)

9. van der Zwaan, S., Marques, C.: Ant Colony Optimisation for Job Shop Scheduling.
In: Proceedings of the Third Workshop on Genetic Algorithms and Artificial Life
(GAAL 1999) (1999)

10. Vaessens, R., Aarts, E., Lenstra, J.: Job shop scheduling by local search. INFORMS
Journal on Computing, vol 8, 302–317 (1996)

11. Applegate, D., Cook, W.: A computational study of the job-shop scheduling prob-
lem. ORSA Journal on Computing, vol 3(1) (1991)

Preliminary Result on Secure Protocols for
Multiple Issue Negotiation Problems

Katsuhide Fujita1, Takayuki Ito1,2, and Mark Klein2

1 Techno-Business School Nagoya Institute of Technology Nagoya, Japan
2 Center for Collective Intelligence Sloan School of Management, Massachusetts

Institute of Technology, Cambridge, USA

Abstract. Multi-issue negotiation protocols represent a promising field
since most negotiation problems in the real world involve multiple is-
sues. Our work focuses on negotiation with multiple interdependent is-
sues in which agent utility functions are nonlinear. Existing works have
not yet concerned with agents’ private information that should be con-
cealed from others in negotiations. In this paper, we propose Distributed
Mediator Protocol and Take it or Leave it Protocol for negotiation that
can reach agreements and protect agents’ private information. Moreover,
we propose Hybrid Secure Protocol that combines Distributed Mediator
Protocol with Take it or Leave it Protocol. The Hybrid Secure Protocol
can also reach agreements while completely concealing agents’ private
information. Furthermore, the Hybrid Secure Protocol achieves high op-
timality and uses less memory.

1 Introduction

Multi-issue negotiation protocols represent an important field of study. Even
though there has been much previous work in this area [1,2,3], most deal exclusively
with simple negotiations involving independent multiple issues. Many real-world
negotiation problems, however, are complex and involve interdependent multiple
issues.Thus,we focus oncomplexnegotiationswith interdependentmultiple issues.
These previous studies mainly assume that agents have an incentive to cooperate
to achieve win-win agreements because the situation is not a zero-sum game.

Existing works have not yet been concerned with agents’ private information. In
negotiation, agents’ private information should not be revealed to other agents and
mediators. For example, suppose that several companies collaboratively design
and develop a new car model. If one company reveals more private information
than the other companies, the other companies will know more of that company’s
important information, such as utility information. As a result, the company suf-
fers a disadvantage in subsequent negotiations, and the mediator might leak the
agent’s utility information. Furthermore, explicitly revealing private information
is dangerous for security reasons. Therefore, our aim is to create a protocol that
will find high-quality solutions while concealing agent’s utility information.

We previously proposed a bidding-based negotiation protocol that focuses on
interdependent multiple issues. Agents generate bids by sampling and search-
ing their utility functions, and the mediator finds the optimum combination of

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 161–172, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

162 K. Fujita, T. Ito, and M. Klein

submitted bids from agents [4]. This protocol can achieve an agreement without
revealing all agent private information. Moreover, we proposed a threshold ad-
justing mechanism where the mediator adjusts the agent’s threshold for generat-
ing bids. In the threshold adjusting mechanism, agents make agreements without
excessively revealing their utility information [5]. However, since in these pro-
tocols the computational complexity for finding the solution is too large, we
proposed a representative-based protocol [6] where the mediator selects rep-
resentatives who propose alternatives to other agents. This protocol drastically
reduced the computational complexity of the number of agents because the num-
ber of agents that make agreements was reduced.

Though, there are two main issues in the above protocols. First, it is impos-
sible for the above protocols to conceal all agent private information because
agents have to reveal some private information. Additionally, scalability for the
complexity of agent’s utility function isn’t very high. Therefore, we need to cre-
ate another new protocol that conceals all agent private information with high
scalability for the complexity of agent utility functions.

In this paper, we propose the Distributed Mediator Protocol (DMP) and the
Take it or Leave it (TOL) Protocol. They make agreements and conceal agent
utility values. In the Distributed Mediator Protocol, we assume many mediators
who search in utility space to find agreements. When searching in their search
space, they employ the Multi-Party Protocol with which they can simultaneously
calculate the sum the per agent utility value and conceal it. Furthermore, DMP
improves the scalability for the complexity of the utility space by dividing the
search space toward the mediators. In the Take it or Leave it (TOL) Protocol,
the mediator searches using the hill-climbing search algorithm. The evaluation
value is decided by responses that agents either take or leave moving from the
current state to the neighbor state.

Moreover, we propose the Hybrid Secure Protocol (HSP) that combines DMP
with TOL. In HSP, TOL is performed first to improve the initial state in the
DMP step. Next, DMP is performed to find the local optima in the neighborhood.
HSP can also reach an agreement and conceal per agent utility information.
Additionally, HSP can reduce the required memory for making an agreement,
which is a major issue in DMP. Our experimental results show that HSP can
improve memory usage more than DMP.

The remainder of the paper is organized as follows. First, we describe a model
of nonlinear multi-issue negotiation. Second, we propose the Distributed Medi-
ator Protocol (DMP) and the Take it or Leave it (TOL) Protocol. Third, we
propose the Hybrid Secure Protocol (HSP). Fourth, we present the experimen-
tal results about optimality and memory. Finally, we describe related work and
draw conclusions.

2 Negotiations with Nonlinear Utility Functions

We consider the situation where n agents want to reach an agreement with a
mediator who manages the negotiation from the middle position. There are m

Preliminary Result on Secure Protocols 163

issues, sj ∈ S, to be negotiated. The number of issues represents the number of
the dimensions of the utility space. For example, if there are three issues1, the
utility space has three dimensions. Issue sj has a value drawn from the domain
of integers [0, X], i.e., sj ∈ [0, X](1 ≤ j ≤M)2.

A contract is represented by a vector of issue values s = (s1, ..., sm).
An agent’s utility function is described in terms of constraints. There are

l constraints, ck ∈ C. Each constraint represents a region with one or more
dimensions and has an associated utility value. Constraint ck has value wi(ck, s)
if and only if it is satisfied by contract s(1 ≤ k ≤ l). Every agent has its own,
typically unique, set of constraints.

An agent’s utility for contract s is defined as ui(s) =
∑

ck∈C,s∈x(ck) wi(ck, s),
where x(ck) is a set of possible contracts (solutions) of ck. This expression pro-
duces a ”bumpy” nonlinear utility space with high points where many constraints
are satisfied and lower regions where few or no constraints are satisfied. This
represents a crucial departure from previous efforts on multi-issue negotiation,
where contract utility is calculated as the weighted sum of the utilities for in-
dividual issues, producing utility functions shaped like flat hyperplanes with a
single optimum.

Figure 1 shows an example of a binary constraint between Issues 1 and 2.
Utility function A, which has a value of 55, holds if the value for Issue 1 is in
the range [3, 7] and the value for Issue 2 is in the range [4, 6]. The utility space is
highly nonlinear with many hills and valleys. In real situations, we assume that
their utility spaces are more complex because users have more utility functions.

We assume, as is common in negotiation contexts, that agents do not share
their utility functions with each other to preserve a competitive edge. Generally,
in fact, agents do not completely know their desirable contracts in advance,
because their own utility functions are simply too large. If we have 10 issues
with 10 possible values per issue, for example, this produces a space of 1010 (10
billion) possible contracts, which is too many to evaluate exhaustively. Agents
must thus operate in a highly uncertain environment.

Finding an optimal contract for individual agents with such utility spaces can
be handled using well-known nonlinear optimization techniques such as simu-
lated annealing or evolutionary algorithms. We cannot employ such methods
for negotiation purposes, however, because they require that agents fully reveal
their utility functions to a third party, which is generally unrealistic in negotia-
tion contexts.

1 The issues are not “distributed” over agents, who are all negotiating a contract that
has N (e.g., 10) issues in it. All agents are potentially interested in the values for all
N issues.

2 A discrete domain can come arbitrarily close to a real domain by increasing its size.
As a practical matter, many real-world issues that are theoretically real (delivery
date, cost) are discretized during negotiations. Our approach, furthermore, is not
theoretically limited to discrete domains. The deal determination part is unaffected,
although the bid generation step will have to be modified to use a nonlinear opti-
mization algorithm suited to real domains.

164 K. Fujita, T. Ito, and M. Klein

Fig. 1. Nonlinear utility function and complex utility space

The objective function for our protocol can be described as follows:

arg max
s

∑
i∈N

ui(s).

Our protocol, in other words, tries to find contracts that maximize social welfare,
i.e., the total utilities for all agents. Such contracts, by definition, will also be
Pareto-optimal.

3 Secure and Scalable Negotiation Protocols

3.1 Distributed Mediator Protocol for Negotiation

We propose the Distributed Mediator Protocol (DMP) in this subsection. In
DMP, there are more than two mediators (Distributed Mediator). DMP
achieves security for agent’s private information by employing the Multi-Party
Protocol [7]. Moreover, DMP achieves scalability for the utility space.

DMP is shown as follows:

We assume n mediators (M0, . . . , Mj , . . . , Mn) who can calculate the sum of all
the agent utility values if k mediators get together. Additionally, there are m
agents (Ag0, . . . , Agi, . . . , Agm). All mediators share q, which is preliminarily the
prime number.

Step 1: The mediators divide the utility space (search space) and choose a
mediator who manages it. How to divide the search space and assign tasks is
beyond the scope of this present discussion. Parallel computation is possible by
dividing the search space. This means that the computational complexity during
searching can decrease.

Preliminary Result on Secure Protocols 165

Step 2: Each mediator searches her search space with a local search algorithm
[8]. Hill-climbing search (HC) and simulated annealing search are examples of
local search algorithms. During the search, the mediator declares a Multi-Party
Protocol if he/she is searching in the state for the first time. After that, the
mediator selects k mediators from all mediators and asks for generating v(shares)
from all agents.
Step 3: Agent i(Ai) randomly selects k dimension formula, which fulfills fi(0) =
xi, and calculates vi,j = fi(j). After that, agent i clandestinely sends vi,j to Mj .
Step 4: Mediator j(Mj) receives v1,j , . . . , vm,j from all agents. Mj calculates
vj = v1,j + · · ·+ vn,j mod q and reveals vj to the other mediators.
Step 5: The mediators calculate f(j), which fulfills f(j) = vj by Lagrange’s
interpolating polynomial. Finally, s, which fulfills f(0) = s, is the sum of all
agent utility values.

Steps 2 ∼ 5 are repeated until they fulfill the at-end condition in the local
search algorithm. Finally, each mediator informs the maximum value (alterna-
tive) in his space to all mediators. After that, the mediators select the maximum
value from all alternatives.

Figure 2 shows the flow in DMP. There are three agents and two mediators.
If two mediators get together, they can calculate the sum of the per agent util-
ity value (k = n). The gray area shows that agents perform the steps without
revealing them. As the figure indicates, the selection of multinomial (fi), gener-
ating share (v), adding the share, and Lagrange’s interpolating polynomial can
calculate the sum of all agent utility values and conceal them.

Fig. 2. Distributed Mediator Protocol

166 K. Fujita, T. Ito, and M. Klein

DMP has a security advantage and scalability for utility space. The details
are shown as follows.

[Security]
DMP can calculate the sum of all agent utility values and conceal them. The
proof is identical as the Multi-Party Protocol [7]. In DMP, other agents and the
mediators can’t know the agent utility values without illegally colluding.

Additionally, k, which is the number of mediators performing the multi-party
protocol, is the tradeoff between security and computational complexity. If k
mediators exchange their shares (v) illegally, they can expose the agent utility
values. Therefore, it is good for security that k is such a large number that
mediators can’t collude illegally. However, it requires more computation time
because more mediators have to stop searching.

[Scalability]
The computational cost can be greatly reduced because the mediators divide
the search space. In existing protocols, they can’t find better agreements when
the search space becomes too large. However, this protocol can locate better
agreements in large search spaces by dividing the search space.

DMP has a weak point: too many shares (v) are generated. This is because
shares are generated that correspond to the search space. To generate shares
takes more time than searching without generating shares. Thus, we need to
generate fewer shares with high optimality.

3.2 Take It or Leave It (TOL) Protocol for Negotiation

In this subsection, we propose the Take it or Leave it (TOL) Protocol, which can
also reach agreements and conceal all agents’ utility information. The mediator
searchs with the hill-climbing search algorithm [8], which is a simple loop that
continously moves in the direction of increasing evaluated value [8]. Additionally,
evaluated value is determined by the responses that agents take or leave to the
offers to move from the current state to the neighbor state. The agents can
conceal their utility value using this evaluation value.

This protocol consists of following steps.

Step1: The mediator randomly selects the initial state.
Step 2: The mediator asks the agents to move from the current to the neighbor
state.
Step 3: Each agent compares its current state with the neighbor state and de-
termines whether to take or leave it. If the neighbor state provides higher utility
value than the current state, the agent “takes it”. If the current state provides
higher or identical utility value than the neighbor state, the agent “leaves it”.
Step4: The mediator selects the next state declared by the most agents as “take
it”. However, the mediator selects the next state randomly if there are more than
two states that most agents declared as “take it”. The mediator can prevent the
local maxima from being reached by random selection. Steps 2, 3, and 4 are
repeated until all agents declare “leave it” or the mediator determines that a

Preliminary Result on Secure Protocols 167

Fig. 3. Take it or Leave it (TOL) Protocol

plateau has been reached. A plateau is an area of the state space landscape
where the evaluation function is flat.

Figure 3 shows the concept of the “Take it or Leave it (TOL) Protocol”. First,
the mediator informs agents about the state whose evaluation value he wants to
know. Second, agents search for their utility space and declare “take it” or “leave
it”. Then they tell the number of agents who declare “take it” (V ALUE(state)).
These steps are repeated until they satisfy the at-end condition.

The “Take it or Leave it (TOL) Protocol” has an advantage of lower time
complexity because it easily rates evaluated value. However, this protocol can’t
find high optimality solutions when a plateau is reached.

4 Hybrid Secure Protocol(HSP) for Negotiation

Since there are weak points in DMP and TOL, as proposed in the previous
section, we propose a new protocol that combines DMP with TOL. This new
protocol is called the Hybrid Secure Protocol (HSP) for negotiation.

The Hybrid Secure Protocol (HSP) is shown as follows:

Step 1: The mediators divide the utility space (search space) and choose a
mediator who manages it.
Step 2: Each mediator searches in her search space using TOL proposed in
3.2. The initial state is selected randomly. By performing the TOL at first, the
mediators can find somewhat higher optimality of solutions without generating
shares (v).
Step 3: Each mediator searches in her search space using DMP proposed in 3.1.
The initial state is the solution found in Step 2. By performing DMP after TOL,
mediators can find the local optima in the neighborhood and conceal the per
agent private information.

Steps 2 and 3 are repeated many times by changing the initial state.
HSP can find solutions with fewer shares than DMP because the initial state

in Step 3 is higher than only performing DMP. In addition, TOL doesn’t generate
shares, and DMP searches in states in which TOL hasn’t searched. Thus, HSP
can reduce the number of shares.

168 K. Fujita, T. Ito, and M. Klein

Meanwhile, optimality in HSP is higher. TOL usually stops searching after
reaching the plateau. Additionally, the main reason for lowering the optimality
in DMP is to reach the local optima, although the initial value in Step 3 is
usually different because it is decided by TOL. Therefore, HSP can find higher
agreement in optimality.

5 Experiment Results

5.1 Setting of Experiment

We conducted several experiments to evaluate the effectiveness of our approach.
In each experiment, we ran 100 negotiations between agents with randomly
generated utility functions.

In the optimality experiments, for each run, we applied an optimizer to the
sum of all agent utility functions to find the contract with the highest possible
social welfare. This value was used to assess the efficiency (i.e., how closely
optimal social welfare was approached) of the negotiation protocols. To find
the optimum contract, we used simulated annealing (SA) because exhaustive
search became intractable as the number of issues grew too large. The SA initial
temperature was 50.0, which decreased linearly to 0 over the course of 2500
iterations. The initial contract for each SA run was randomly selected.

The following are the parameters for our experiments:
The number of agents is six, and the number of mediators is 2(Number of Issues).

In DMP, they can calculate the sum of the per agent utility values if four mediators
get together. In DMP, the search space is divided equally.

[Setting the utility function]
The domain for the issue values is [0, 9]. Constraints include 10 unary constraints,
5 binary constraints, 5 trinary constraints, etc. (a unary constraint relates to
one issue, a binary constraint relates to two issues, and so on). The maximum
value for a constraint is 100 × (Number of Issues). Constraints that satisfy
many issues have, on average, larger weights, which seems reasonable for many
domains. To meet scheduling, for example, higher order constraints concern more
people than lower order constraints, so they are more important. The maximum
width for a constraint is 7. The following constraints, therefore, would all be
valid: Issue 1 = [2, 6], Issue 3 = [2, 9], and Issue 7 = [1, 3].

[Setting of Simulated Annealing (SA)]
The annealing schedule for the distributed mediator protocol included an initial
temperature of 20 with 5000 iterations. Note that the annealer must not run too
long or too ‘hot’ because then each initial state by TOL will tend to find the
global optimum instead of the peak of the optimum nearest the initial state in
DMP.

In our experiments, we ran 100 negotiations in every condition. Our code was
implemented in Java 2 (1.5) and run on a core 2 duo processor iMac with 1.0
GB memory on a Mac OS X 10.5 operating system.

Preliminary Result on Secure Protocols 169

5.2 Experimental Results

Figures 4 and 5 compare the protocols proposed in this paper. “(A) DMP (SA)”
is the distributed mediator protocol, and the search algorithm is simulated an-
nealing [8]. “(B) DMP (HC)” is the distributed mediator protocol, and the search
algorithm is the hill-climbing algorithm [8]. “(C) HSP (SA)” is the hybrid secure
protocol, and the search algorithm in the distributed mediator step is simulated
annealing. “(D) HSP (HC)” is the hybrid secure protocol, and the search algo-
rithm in the distributed mediator step is the hill-climbing algorithm. “(E) TOL”
is the Take it or Leave it Protocol only.

Figure 4 shows the optimality rate in five protocols. “(B) DMP (HC)” de-
creases rapidly based on the number of issues because hill-climbing reaches local
optima by increasing the search space. Additionally, “(A) DMP (SA)” is the
same as the optimal solution. Therefore, optimality in DMP depends on the
search algorithm. “(E) TOL” is stable, so it does not decrease rapidly because
each agent tries to find a better state in each utility space. “(C) HSP (SA)” and
“(D) HSP (HC)” have higher optimality than “(E) TOL” because HSP performs
DMP after performing TOL. In addition, “(D) HSP (HC)” has higher optimality
than “(C) HSP (SA)” because SA in the DMP step sometimes stops searching
for a worse state than the initial state due to a random nature. But HC stops
searching for a better state than the initial state.

Figure 5 shows the average share (v) per agent. The number of shares shows
a comparison of memory in several protocols. “(A) DMP (SA)” increases expo-
nentially. On the other hand, “(B) DMP (HC)” reduces the shares compared to
“(A) DMP (SA)” because SA searches for more states than HC. The number of
shares in DMP depends on the features of the search protocol. Furthermore, “(C)

Fig. 4. Optimality Rate

170 K. Fujita, T. Ito, and M. Klein

Fig. 5. The number of shares

HSP (SA)” and “(D) HSP (HC)” reduce shares compared to “(A) DMP (SA)”
and “(B) DMP (HC)” because the initial state in the DMP step in HSP has
a higher value than the initial state in DMP since TOL was performed before.
Thus, HSP can reduce the shares more than DMP.

From the above experiments HSP can reduce the shares with high optimality.

6 Related Work

Most previous work on multi-issue negotiation [1,2,3] has only addressed lin-
ear utilities. Recently some researchers have been focusing on more complex
and nonlinear utilities. [9] has explored a range of protocols based on mutation
and selection on binary contracts. This paper does not describe what kind of
utility function is used, nor does he present any experimental analyses, it is un-
clear whether this strategy enables sufficient exploration of utility space. [10]
presents an approach based on constraint relaxation. However, there is no ex-
perimental analysis, and this paper merely presents a small toy problem with 27
contracts. [11] modeled a negotiation problem as a distributed constraint opti-
mization problem. This paper claims the proposed algorithm is optimal, but it
does not discuss computational complexity and only provides a single small-scale
example.

Based on a simulated-annealing mediator, [12] presented a protocol that was
applied with near-optimal results to medium-sized bilateral negotiations with
binary dependencies. The work presented here is distinguished by demonstrat-
ing both scalability and high optimality values for multilateral negotiations and
higher order dependencies. [13,14] also presented a protocol for multi-issue prob-
lems for bilateral negotiations. [15,16] presented a multi-item and multi-issue

Preliminary Result on Secure Protocols 171

negotiation protocol for bilateral negotiations in electronic commerce situations.
[17] proposed bilateral multi-issue negotiations with time constraints, and [18]
proposed multi-issue negotiation that employs a third-party to act as a medi-
ator to guide agents toward equitable solutions. This framework also employs
an agenda that serves as a schedule for the ordering of issue negotiation. Agen-
das are very interesting because agents only need to focus on a few issues. [19]
proposed a checking procedure to mitigate this risk and show that by tuning
this procedure’s parameters, outcome deviation can be controlled. These stud-
ies reflect interesting viewpoints, but they focused on just bilateral trading or
negotiations.

7 Conclusion

In this paper, we proposed the Distributed Mediator Protocol (DMP) and the
Take it or Leave it (TOL) Protocol that can reach agreements and conceal
agent’s utility information and achieve high scalability in utility space. More-
over, we proposed the Hybrid Secure Protocol (HSP) that combines DMP and
TOL. Experimental results demonstrated that HSP can reduce memory with
high optimality.

One future work includes a method to divide the search space depending on
agent power. A protocol that develops the scalability of utility information is
also possible future work. One possible protocol is to break up the agenda of
issues.

References

1. Bosse, T., Jonker, C.M.: Human vs. computer behaviour in multi-issue negotia-
tion. In: Proc. of 1st International Workshop on Rational, Robust, and Secure
Negotiations in Multi-Agent Systems (RRS 2005), pp. 11–24 (2005)

2. Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make issue trade-
offs in automated negotiations. Artificial Intelligence 142, 205–237 (2002)

3. Fatima, S., Wooldridge, M., Jennings, N.R.: Optimal negotiation of multiple is-
sues in incomplete information settings. In: Proc. of Third International Joint
Conference on Autonomous Agent and Multi-Agent Systems (AAMAS 2004), pp.
1080–1087 (2004)

4. Ito, T., Hattori, H., Klein, M.: Multi-issue negotiation protocol for agents: Explor-
ing nonlinear utility spaces. In: Proc. of 20th International Joint Conference on
Artificial Intelligence (IJCAI 2007), pp. 1347–1352 (2007)

5. Fujita, K., Ito, T., Hattori, H., Klein, M.: An approach to implementing a threshold
adjusting mechanism in very complex negotiations: A preliminary result. In: Proc.
of The 2nd International Conference on Knowledge, Information and Creativity
Support Systems (KICSS 2007) (2007)

6. Fujita, K., Ito, T., Klein, M.: A representative-based multi-round protocol for
multi-issue negotiations. In: Proc. of th 7th Inernational Joint Conference on Au-
tonomous Agents and Multi-agent Systems (AAMAS 2008) (2008)

7. Lindell, Y.: Composition of Secure Multi-Party Protocols: A Comprehensive Study.
Springer, Heidelberg (2003)

172 K. Fujita, T. Ito, and M. Klein

8. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs (2002)

9. Lin, R.J., Chou, S.T.: Bilateral multi-issue negotiations in a dynamic environment.
In: Proc. of AMEC 2003 (2003)

10. Barbuceanu, M., Lo, W.K.: Multi-attribute utility theoretic negotiation for elec-
tronic commerce. In: Dignum, F.P.M., Cortés, U. (eds.) AMEC 2000. LNCS,
vol. 2003, pp. 15–30. Springer, Heidelberg (2001)

11. Luo, X., Jennings, N.R., Shadbolt, N., Leung, H., Lee, J.H.: A fuzzy constraint
based model for bilateral, multi-issue negotiations in semi-competitive environ-
ments. Artificial Intelligence 148, 53–102 (2003)

12. Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Negotiating complex contracts.
Group Decision and Negotiation 12(2), 58–73 (2003)

13. Lai, G., Li, C., Sycara, K.: A general model for pareto optimal multi-attribute
negotiations. In: Proc. of The 2nd International Workshop on Rational, Robust,
and Secure Negotiations in Multi-Agent Systems (RRS 2006) (2006)

14. Lai, G., Sycara, K., Li, C.: A decentralized model for multi-attribute negotiations
with incomplete information and general utility functions. In: Proc. of The 2nd
International Workshop on Rational, Robust, and Secure Negotiations in Multi-
Agent Systems (RRS 2006) (2006)

15. Robu, V., Poutre, H.L.: Retrieving the structure of utility graphs used in multi-item
negotiation through collaborative filtering of aggregate buyer preferences. In: Proc.
of The 2nd International Workshop on Rational, Robust, and Secure Negotiations
in Multi-Agent Systems (RRS 2006) (2006)

16. Robu, V., Somefun, D.J.A., Poutre, J.L.: Modeling complex multi-issue negotia-
tions using utility graphs. In: Proc. of the 4th International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS 2005) (2005)

17. Fatima, S.S., Wooldridge, M., Jennings, N.R.: Approximate and online multi-issue
negotiation. In: Proc. of th 6th Inernational Joint Conference on Autonomous
Agents and Multi-agent Systems (AAMAS 2007), pp. 947–954 (2007)

18. Shew, J., Larson, K.: The blind leading the blind: A third-party model for bilateral
multi-issue negotiations under incomplete information. In: Proc. of The 1st Interna-
tional Workshop on Agent-based Complex Automated Negotiations (ACAN 2008)
(2008)

19. Hindriks, K., Jonker, C., Tykhonov, D.: Avoiding approximation errors in multi-
issue negotiation with issue dependencies. In: Proc. of The 1st International Work-
shop on Agent-based Complex Automated Negotiations (ACAN 2008) (2008)

Performance Analysis about Parallel Greedy
Approximation on Combinatorial Auctions

Naoki Fukuta1 and Takayuki Ito2,3

1 Shizuoka University,Hamamatsu Shizuoka 4328011, Japan
fukuta@cs.inf.shizuoka.ac.jp

http://whitebear.cs.inf.shizuoka.ac.jp/
2 Nagoya Institute of Technology, Gokiso-cho Nagoya 4668555, Japan
3 Massachusetts Institute of Technology, Cambridge, MA 02142 USA

Abstract. Combinatorial auctions provide suitable mechanisms for ef-
ficient allocation of resources to self-interested agents. Considering ubiq-
uitous computing scenarios, the ability to complete an auction within a
fine-grained time period without loss of allocation efficiency is in strong
demand. Furthermore, to achieve such scenarios, it is very important
to handle a large number of bids in an auction. Recently, we proposed
an algorithm to obtain sufficient quality of winners in very short time.
However, it is demanded to analyze which factor is mainly affected to
obtain such a good performance. Also it is demanded to clarify the actual
implementation-level performance of the algorithm compared to a ma-
jor commercial-level generic problem solver. In this paper, we show our
parallel greedy updating approach contributes its better performance.
Furthermore, we show our approach has a certain advantage compared
to a latest commercial-level implementation of generic LP solver through
various experiments.

1 Introduction

Combinatorial auctions [1], one of the most popular market mechanisms, have
a huge effect on electronic markets and political strategies. For example, Sand-
holm et al. [2] proposed a market using their innovative combinatorial auction
algorithms. Combinatorial auctions provide suitable mechanisms for efficient al-
location of resources to self-interested attendees [1]. Therefore, many works have
been done to utilize combinatorial auction mechanisms for efficient resource allo-
cation. For example, the FCC tried to employ combinatorial auction mechanisms
for assigning spectrums to companies [3].

On the other hand, efficient resource allocation is also becoming crucial in
many computer systems that should manage resources efficiently, and combi-
natorial auction mechanisms are suitable for this situation. For example, con-
sidering a ubiquitous computing scenario, there is typically a limited amount
of resources (sensors, devices, etc.) that may not cover all needs for all agents.
Due to certain reasons (physical limitations, privacy, etc.), most of the resources
cannot be shared with other agents. Furthermore, agents will use two or more

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 173–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://whitebear.cs.inf.shizuoka.ac.jp/

174 N. Fukuta and T. Ito

resources at a time to achieve desirable services for users. Of course, each agent
provides services to its own user, and the agent may be self-interested.

We proposed our initial idea of winner approximation algorithm[4], presented
comparative evaluation of algorithms[5][6], proposed an extension for effective
reuse among similar problems[7], and discussed theoretical issues in such
approximation[8]. However, it is demanded to analyze which factor is mainly
affected to obtain such a good performance. Also it was unclear how good the
actual implementation-level performance of the algorithm is, comparing to a ma-
jor commercial-level generic problem solver. In this paper, we analyze the per-
formance of our algorithm with slightly modified variants on numerous datasets.
Furthermore, we show our approach has a certain advantage compared to a latest
commercial-level implementation of generic linear problem(LP) solver.

2 Preliminaries

2.1 Winner Determination Problem

The winner determination problem on combinatorial auctions is defined as fol-
lows [1]: The set of bidders is denoted by N = 1, . . . , n, and the set of items by
M = {m1, . . . , mk}. |M | = k. Bundle S is a set of items: S ⊆M . We denote by
vi(S), bidder i’s valuation of the combinatorial bid for bundle S. An allocation
of the items is described by variables xi(S) ∈ {0, 1}, where xi(S) = 1 if and only
if bidder i wins bundle S. An allocation, xi(S), is feasible if it allocates no item
more than once, ∑

i∈N

∑
S�j

xi(S) ≤ 1

for all j ∈ M . The winner determination problem is the problem to maximize
total revenue

max
X

∑
i∈N,S⊆M

vi(S)xi(S)

for feasible allocations X � xi(S).

2.2 Lehmann’s Greedy Winner Determination

Lehmann’s greedy algorithm [9] is a very simple but powerful linear algorithm
for winner determination in combinatorial auctions. Here, a bidder declaring
< s, a >, with s ⊆ M and a ∈ R+ will be said to put out a bid b =< s, a >.
Two bids b =< s, a > and b′ =< s′, a′ > conflict if s ∩ s′ = ∅. The greedy
algorithm can be described as follows. (1) The bids are sorted by some criterion.
The researchers [9] proposed sorting list L by descending average amount per
item. More generally, they proposed sorting L by a criterion of the form a/|s|c
for some number c, c ≥ 0, possibly depending on the number of items, k. (2) A
greedy algorithm generates an allocation. L is the sorted list in the first phase.
Walk down the list L, allocates items to bids whose items are still unallocated.

Performance Analysis about Parallel Greedy Approximation 175

3 Enhanced Approximation Algorithms

3.1 Incremental Updating

In [4], we have shown that the hill-climbing approach performs well when an
auction has a massively large number of bids. In this section, we summarize our
proposed algorithms for incrementally updating solutions.

Lehmann’s greedy winner determination could succeed in specifying the lower
bound of the optimality in its allocation [9]. A straightforward extension of the
greedy algorithm is to construct a local search algorithm that continuously up-
dates the allocation so that the optimality is increased. Intuitively, one allocation
corresponds to one state of a local search.

The inputs are Alloc and L. L is the bid list of an auction. Alloc is the initial
greedy allocation of items for the bid list.

1: function GreedyHillClimbingSearch(Alloc, L)
2: RemainBids:= L - Alloc;
3: for each b ∈ RemainBids as sorted order
4: if b conflicts Alloc then
5: Conflicted:=Alloc - consistentBids({b}, Alloc);
6: NewAlloc:= Alloc - Conflicted + {b};
7: ConsBids:=
8: consistentBids(NewAlloc, RemainBids);
9: NewAlloc:=NewAlloc+ConsBids;

10: if price(Alloc) < price(NewAlloc) then
11: return GreedyHillClimbingSearch(NewAlloc,L);
12: end for each
13: return Alloc

The function consistentBids finds consistent bids for the set NewAlloc by
walking down the list RemainBids. Here, a new inserted bid will wipe out some
bids that conflict with the inserted bid. So there will be free items to allocate
after the insertion. The function consistentBids tries to insert the other bids
greedily for selling as many of the items as possible. When the total price for
NewAlloc iw higher than Alloc, current allocation is updated to NewAlloc and
the function continues updating from NewAlloc. We call this as Greedy Hill
Climbing(GHC) in this paper.

Also we prepared an ordinary Hill-Climbing local search algorithm. The dif-
ference to above is to choose ‘best’ alternatives in each climbing step, instead of
choosing it greedily. We call this as Best Hill Climbing(BHC) in this paper.

1: function BestHillClimbingSearch(Alloc, L)
2: MaxAlloc := φ

3: RemainBids:= L - Alloc;
4: for each b ∈ RemainBids as sorted order

176 N. Fukuta and T. Ito

5: if b conflicts Alloc then
6: Conflicted:=Alloc - consistentBids({b}, Alloc);
7: NewAlloc:= Alloc - Conflicted + {b};
8: ConsBids:=
9: consistentBids(NewAlloc, RemainBids);

10: NewAlloc:=NewAlloc+ConsBids;
11: if price(MaxAlloc) < price(NewAlloc) then
12: MaxAlloc := NewAlloc;
13: end for each
14: if price(Alloc) < price(MaxAlloc) then
15: return BestHillClimbingSearch(MaxAlloc,L);
16: return Alloc

3.2 Parallel Search for Multiple Weighting Strategies

The optimality of allocations got by Lehmann’s algorithm (and the following hill-
climbing) deeply depends on which value was set to c in the bid weighting func-
tion. Again, in [9], Lehmann et al. argued that c = 1/2 is the best parameter for
approximation when the norm of the worst case performance is considered. How-
ever, optimal value for approximating an auction is varied from 0 to 1 depending
on the auction problem. In [4], we presented an initial idea of an enhancement for
our incremental updating algorithm to parallel search for different bid weighting
strategies (e.g, doing the same algorithm for both c = 0 and c = 1).

4 Evaluation

4.1 Experiment Settings

In this section, we compare our algorithms to other approaches in various datasets.
Details about other approaches are presented in section 5.

We implemented our algorithms in a C program for the following experiments.
We also implemented the Casanova algorithm[10] in a C program. However, for
the following experiments, for Zurel’s algorithm we used Zurel’s C++ based
implementation that is shown in [11]. Also we used CPLEX Interactive Optimizer
11.0.0 (32bit) in our experiments.

The experiments were done with the above implementations to examine the
performance differences among algorithms. The programs were employed on a
Mac with Mac OS X 10.4, CoreDuo 2.0GHz CPU, and 2GBytes of memory. Thus,
actual computation time will be much smaller when we employ parallel processor
systems in a distributed execution environment. We leave this for future work.

We conducted several experiments. In each experiment, we compared the fol-
lowing search algorithms. greedy(C=0.5) uses Lehmann’s greedy allocation al-
gorithm with parameter (c = 0.5). greedy-N uses the best results of Lehmann’s
greedy allocation algorithm for N different weighting parameters (0 ≤ c ≤ 1).
*HC(c=0.5) uses a local search in which the initial allocation is Lehmann’s

Performance Analysis about Parallel Greedy Approximation 177

Table 1. Optimality on CATS-VARSIZE dataset

arbitrary L2 L3 L4 L6 L7 matching regions scheduling average
greedy(C=0.5) 0.8641 0.9968 0.8037 0.9076 0.9403 0.8652 0.9721 0.8734 0.9143 0.9042
GHC(C=0.5) 0.9485 1.0000 0.9433 0.9611 0.9902 0.9822 0.9957 0.9703 0.9826 0.9749
BHC(C=0.5) 0.9441 1.0000 0.9435 0.9575 0.9895 0.9841 0.9960 0.9686 0.9860 0.9744

greedy-3 0.8809 0.9999 0.8237 0.9201 0.9571 0.8917 0.9742 0.8859 0.9474 0.9201
GHC-3 0.9669 1.0000 0.9568 0.9773 0.9947 0.9890 0.9964 0.9808 0.9930 0.9839
BHC-3 0.9640 1.0000 0.9562 0.9756 0.9948 0.9903 0.9967 0.9793 0.9948 0.9835

greedy-11 0.8973 1.0000 0.8359 0.9355 0.9683 0.9010 0.9749 0.9028 0.9664 0.9314
GHC-11 0.9750 1.0000 0.9663 0.9807 0.9957 0.9920 0.9967 0.9857 0.9975 0.9877
BHC-11 0.9712 1.0000 0.9660 0.9791 0.9958 0.9925 0.9970 0.9844 0.9969 0.9870

SA 0.9768 1.0000 0.9756 0.9813 0.9950 0.9921 0.9975 0.9872 0.9969 0.9892
Zurel 0.9671 0.9998 0.9571 0.9811 0.9977 0.9838 0.9994 0.9836 0.9909 0.9845

Casanova 0.9567 1.0000 0.9741 0.96457 0.9753 0.9905 0.9946 0.9711 0.9979 0.9805

allocation with c = 0.5 and conducts one of hill-climbing searchs (e.g., GHC
or BHC) shown in the previous section. Similarly, *HC-N uses the best results
of a hill-climbing search (e.g,GHC or BHC) for N different weighting parame-
ters (0 ≤ c ≤ 1). For example, GHC-11 means the best result of greedy hill-
climbing(GHC) with parameter c = {0, 0.1, · · · , 0.9, 1}. SA uses the simulated
annealing algorithm presented in [4]. Also, we denote the Casanova algorithm as
casanova and Zurel’s algorithm as Zurel.

In the following experiments, we used 0.2 for the epsilon value of Zurel’s
algorithm in our experiments. This value appears in [11]. Also, we used 0.5 for
np and 0.15 for wp on Casanova, which appear in [10]. Note that we set maxTrial
to 1 but maxSteps to ten times the number of bids in the auction.

4.2 Evaluation on Basic Auction Dataset

In [11], the researchers evaluated the performance of their presented algorithmwith
the data set presented in [12], comparedwithCPLEXandother existing implemen-
tations. In [6], we presented comparison of our algorithms, Casanova, and Zurel’s
algorithm with the dataset provided in [12]. This dataset contains 2240 auctions
with optimal values, ranging from 25 to 40 items and from 50 to 2000 bids.

We conducted detailed comparisons with common datasets from CATS bench-
mark[13]. Compared to deVries’ dataset shown in [12], the CATS benchmark is
very common and it contains more complex and larger datasets.

Table 1 shows the comparison of our algorithms, Casanova, and Zurel’s al-
gorithm with a dataset provided in the CATS benchmark [13]. The dataset has
numerous auctions with optimal values in several distributions. Here we used
‘varsize’ which contains a total of 7452 auctions with reliable optimal values in 9
different distributions.1 Numbers of items range from 40 to 400 and numbers of
bids range from 50 to 2000. The name of each distribution is referred from [13].
1 Since some of the original data seems corrupted or failed to obtain optimal values,

we excluded such auction problems from our dataset. Also, we excluded a whole
dataset of a specific bid distribution when the number of valid optimal values is
smaller than the other half of the data. The original dataset provides optimal values
of auction problems by two independent methods, CASS and CPLEX. Therefore, it
is easy to find out such corrupted data from the dataset.

178 N. Fukuta and T. Ito

Since problems in the dataset have relatively small size of bids and items, we
omitted the execution time since all algorithms run in very short time. Here,
we can see that the performances of GHC-11 and SA are better than Zurel’s
on arbitrary, L2, L3, L7, regions, and scheduling. Others are nearly equal to
Zurel’s. The performance of Casanova is nearly equal to or less than GHC(C=0.5)
excluding L3 and scheduling.

Note that those differences come from the differences of the termination condi-
tion on each algorithm. In particular, Casanova spent much more time compared
with the other two algorithms. However, we do not show the time performance
here since the total execution time is relatively too small to be compared.

Here, We can see the performance of both greedy, GHC, and BHC increases
when we use more threads to parallel search for multiple weightings. For example,
the result of GHC-3 is better than GHC(c=0.5) and GHC-11 is slightly better in
the average. It shows that our parallel approximation approach will increase the
performance effectively even when the number of searching threads is small.

Also we compared the performance on our greedy local updating approach
(GHC) with ordinary best updating approach(BHC). Surprizingly, the average
performance of GHC are slightly better than BHC, regardless of using parallel
search. This is because the BHC approach is still heuristic one so it does not
guarantee the choice is best for grobal optimization. Also we think we found a
very good heuristic bid weighting function for our greedy updating.

4.3 Evaluation on Large Auction Dataset

The CATS common datasets we used in Section 4.2 have a relatively smaller
number of bids than we expected. We conducted additional experiments with
much greater numbers of bids. We prepared additional datasets having 20,000
non-dominated bids in an auction. The datasets were produced by CATS [13]
with default parameters in 5 different distributions. In the datasets, we prepared
100 trials for each distribution. Each trial is an auction problem with 256 items
and 20,000 bids.2

Table 2 shows the experimental result on the datasets with 20,000 bids in
an auction focused on execution time of approximation. Due to the difficulty of
attaining optimal values, we normalized all values as Zurel’s results equaling 1
as follows.

Let A be a set of algorithms, z ∈ A be the Zurel’s approximation algorithm,
L be a dataset generated for this experiment, and revenuea(p) such that a ∈ A
be the revenue obtained by algorithm a for a problem p such that p ∈ L, the
average revenue ratio ratioAa(L) for algorithm a ∈ A for dataset L is defined
as follows:

ratioAa(L) =

∑
p∈L revenuea(p)∑
p∈L revenuez(p)

Here, we use ratioAa(L) for our comparison of algorithms.
2 Due to the difficulty of preparing the dataset, we only prepared 5 distributions. For

more details about the bid generation problem, see [13]. A preliminary result of this
experiment was shown in [5].

Performance Analysis about Parallel Greedy Approximation 179

Table 2. Time Performance on 20,000 bids-256 items
L2 L3 L4 L6 L7 average

greedy(c=0.5) 1.0002 (23.0) 0.9639 (19.0) 0.9417 (23.0) 0.9389 (23.4) 0.7403 (22.1) 0.9170 (22.1)
greedy-3-seq 1.0003 (69.1) 0.9639 (59.2) 0.9999 (72.9) 0.9965 (67.8) 0.7541 (66.8) 0.9429 (67.2)
greedy-3-para 1.0003 (26.4) 0.9639 (20.9) 0.9999 (28.4) 0.9965 (26.0) 0.7541 (25.5) 0.9429 (25.4)

BHC(c=0.5)-100ms 1.0002 (100) 0.9639 (100) 0.9417 (100) 0.9389 (100) 0.7413 (100) 0.9170 (100)
BHC-3-seq-100ms 1.0003 (100) 0.9639 (100) 0.9999 (100) 0.9965 (100) 0.7541 (100) 0.9429 (100)
BHC-3-para-100ms 1.0003 (100) 0.9639 (100) 0.9999 (100) 0.9965 (100) 0.7541 (100) 0.9429 (100)
GHC(c=0.5)-100ms 1.0004 (100) 0.9741 (100) 0.9576 (100) 0.9533 (100) 0.8260 (100) 0.9423 (100)
GHC-3-seq-100ms 1.0004 (100) 0.9692 (100) 1.0000 (100) 0.9966 (100) 0.8287 (100) 0.9590 (100)
GHC-3-para-100ms 1.0004 (100) 0.9743 (100) 1.0001 (100) 0.9969 (100) 0.9423 (100) 0.9828 (100)
BHC(c=0.5)-1000ms 1.0002 (1000) 0.9639 (1000) 0.9417 (1000) 0.9389 (1000) 0.7413 (1000) 0.9170 (1000)
BHC-3-seq-1000ms 1.0003 (1000) 0.9639 (1000) 0.9999 (1000) 0.9965 (1000) 0.7541 (1000) 0.9429 (1000)
BHC-3-para-1000ms 1.0003 (1000) 0.9639 (1000) 0.9999 (1000) 0.9965 (1000) 0.7541 (1000) 0.9429 (1000)
GHC(c=0.5)-1000ms 1.0004 (1000) 0.9856 (1000) 0.9771 (1000) 0.9646 (1000) 1.0157 (1000) 0.9887 (1000)
GHC-3-seq-1000ms 1.0004 (1000) 0.9804 (1000) 1.0003 (1000) 0.9976 (1000) 1.0086 (1000) 0.9975 (1000)
GHC-3-para-1000ms 1.0004 (1000) 0.9856 (1000) 1.0006 (1000) 0.9987 (1000) 1.0240 (1000) 1.0019 (1000)

SA-1200ms 1.0004 (1200) 0.9773 (1200) 0.9594 (1200) 0.9449 (1200) 1.0083 (1200) 0.9781 (1200)
Zurel-1st 0.5710 (11040) 0.9690 (537) 0.9983 (2075) 0.9928 (1715) 0.6015 (1796) 0.8265 (3433)

Zurel 1.0000 (13837) 1.0000 (890) 1.0000 (4581) 1.0000 (4324) 1.0000 (3720) 1.0000 (5470)
casanova-10ms 0.2583 (10) 0.0069 (10) 0.0105 (10) 0.0202 (10) 0.2577 (10) 0.0632 (10)
casanova-100ms 0.2583 (100) 0.0069 (100) 0.0105 (100) 0.0202 (100) 0.2577 (100) 0.1107 (100)
casanova-1000ms 0.5357 (1000) 0.1208 (1000) 0.0861 (1000) 0.1486 (1000) 0.7614 (1000) 0.3305 (1000)

cplex-100ms 0.0000 (288) 0.0000 (121) 0.0299 (111) 0.0000 (150) 0.0000 (119) 0.0060 (158)
cplex-333ms 0.0000 (489) 0.0000 (393) 0.9960 (497) 0.9716 (354) 0.0000 (487) 0.3935 (444)
cplex-1000ms 0.0000 (1052) 0.0000 (1039) 0.9960 (1143) 0.9716 (1140) 0.0000 (2887) 0.3935 (1452)
cplex-3000ms 0.0000 (9171) 0.9338 (3563) 0.9964 (3030) 0.9716 (3077) 0.0000 (3090) 0.5804 (4386)

(each value in () is time in milliseconds)

We prepared cut-off results for Casanova and HC. For example, casanova-
10ms denotes the result of Casanova within 10 milliseconds. Here, for faster
approximation, we used greedy-3,GHC-3, and BHC-3 but did not use greedy-11,
GHC-11, and BHC-11. Here, greedy-3 uses the best results of Lehmann’s greedy
allocation algorithm with parameter (0 ≤ c ≤ 1 in 0.5 steps). GHC-3 and BHC-3
use the best results of the local updating with parameter (0 ≤ c ≤ 1 in 0.5 steps).
Also, we prepared a variant of our algorithm that has a suffix of ‘-seq’ or ‘-para’.
The suffix ‘-seq’ denotes the algorithm is completely executed in a sequence that
is equal to one that can be executed on a single CPU computer. For example,
greedy-3-seq denotes that the execution time is just the sum of execution times of
three threads. The suffix ‘-para’ denotes the algorithm is completely executed in
a parallel manner, and the three independent threads are completely executed in
parallel. Here, we used the ideal value for ‘-para’ since our computer has only two
cores in the CPU. The actual execution performance will be between ‘-seq’ and
‘-para’. Also, we denote the initial performance of Zurel’s algorithm as Zurel-1st.
Here, Zurel-1st is the result at the end of its first phase and no winners will be
approximately assigned before it. cplex is the result of CPLEX with the specified
time limit.

On most distributions in Table 2, Zurel-1st takes more than 1 second but the
obtained ratioA is lower than greedy-3-seq. Furthermore, the average ratioA of
GHC-3-para-1000ms is higher than Zurel while its computation time is less than
both Zurel and Zurel-1st.

On all distributions in Table 2, BHC could not get any update within the time
limit so there is no update from greedy. Here, although SA performs better than
greedy(C=0.5), it could not outperform GHC(C=0.5) in any case. Therefore, we
can see that both ‘best-updating’ and ‘random-updating’ approaches are not
sufficient enough for extremely short time approximation, although the ‘greedy-
updating’ approach makes a good performance in the same situation.

180 N. Fukuta and T. Ito

Table 3. Time Performance on 100,000 bids-256 items

L2 L3 L4 L6 L7 average

greedy-3 1.1098 (51.5) 0.9836 (54.4) 1.0003 (56.8) 1.0009 (58.8) 0.8688 (52.5) 0.9927 (54.8)
GHC-3-para-333ms 1.1098 (333) 0.9859 (333) 1.0003 (333) 1.0009 (333) 0.9395 (333) 1.0073 (333)
GHC-3-para-1000ms 1.1098 (1000) 0.9880 (1000) 1.0003 (1000) 1.0010 (1000) 0.9814 (1000) 1.0161 (1000)

Zurel-1st 0.8971 (74943) 0.9827 (2257) 0.9998 (5345) 0.9987 (4707) 0.7086 (8688) 0.9174 (19188)
Zurel 1.0000 (91100) 1.0000 (6036) 1.0000 (30568) 1.0000 (44255) 1.0000 (17691) 1.0000 (37930)

casanova-130ms 0.3031 (130) 0.0061 (130) 0.0117 (130) 0.0182 (130) 0.2246 (130) 0.1127 (130)
casanova-333ms 0.3506 (333) 0.0379 (333) 0.0328 (333) 0.0673 (333) 0.7536 (333) 0.2484 (333)
casanova-1000ms 0.4954 (1000) 0.1176 (1000) 0.0946 (1000) 0.1605 (1000) 0.7832 (1000) 0.3303 (1000)

cplex-100ms 0.0000 (2022) 0.0000 (232) 0.0000 (143) 0.0000 (133) 0.0000 (852) 0.0000 (676)
cplex-333ms 0.0000 (2021) 0.0000 (559) 0.9998 (1084) 0.0000 (412) 0.0000 (852) 0.2000 (986)
cplex-1000ms 0.0000 (2021) 0.0000 (1045) 0.9998 (1085) 0.0000 (1328) 0.0000 (1285) 0.2000 (1353)
cplex-3000ms 0.0000 (3496) 0.0000 (3286) 0.9998 (5207) 0.9965 (3092) 0.0000 (15667) 0.3993 (6149)

(each value in () is time in milliseconds)

In many settings of CPLEX, the values are 0. This is because CPLEX could
not generate initial approximation result within the provided time limit. Only
L4 and L6 have results for CPLEX. However, CPLEX spends around 400 msec
for the computation but the results are still lower than greedy-3. For L3, CPLEX
could prepare results in 3.8 sec of computation, however, the result is still lower
than greedy-3. This is because the condition we set up gave extremely short time
limit so therefore CPLEX could not generate sufficient approximation results in
such hard time constraint.

Table 3 shows the experimental result on the dataset with 100,000 bids in
an auction focused on the early anytime performance. While GHC-3 and Zurel’s
algorithm are competitive in Table 2, it is clear that our proposed GHC-3 out-
performs Zurel’s algorithm in any time performance in Table 3. Note that the
time needed to attain initial allocations increased dramatically (approx. 2 times
in L3 to over 7 times in L7) when the number of bids becomes five times larger
than that of Table 2. However, our GHC-3-para-1000ms only takes the same ex-
ecution time (i.e, 1000 msec) but its average ratioA is higher than Zurel. Note
that the GHC-3-para-333ms has still higher ratioA value than Zurel while its
average computation time is 100 times less. We argue that our algorithm has an
advantage when the number of bids increases.

5 Related Work

5.1 Approaches for Optimization Problems

There are really many approaches to optimization problems. Linear program-
ming is one of the well-known approaches in this area. The winner determination
problem on combinatorial auctions can be transformed into a linear program-
ming problem. Therefore, it is possible to use a linear programming solver for
the winner determination problem.

CPLEX is a well-known, very fast linear programming solver system. In [11],
Zurel et al. evaluated the performance of their presented algorithm with many
data sets, compared with CPLEX and other existing implementations. While
the version of CPLEX used in [11] is not up-to-date, the shown performance of
Zurel’s algorithm is approximately 10 to 100 times faster than CPLEX. In this

Performance Analysis about Parallel Greedy Approximation 181

paper, we showed direct comparisons to the latest version of CPLEX we could
prepare. Our approach is far better than latest version of CPLEX for large-scale
winner determination problems. Therefore, the performance of our approach is
competitive enough with CPLEX or other similar solver systems. This is natural
since Zurel’s and our approaches are specialized for combinatorial auctions, and
also focus only on faster approximation but do not seek optimal solutions. In case
we need optimal solutions, it is good choice to solve the same problem by both
our approach and CPLEX in parallel. This could improve anytime performance
but guarantee obtaining optimal solutions. In this case, our approach should
spend very small computation overhead.

Random-walk search is also a strong approach for approximating combinato-
rial optimization problems. There have been many algorithms proposed based
on random-walk search mechanisms.

In [10], Casanova was proposed, which applies a random walk SAT approach
for approximating the winner determination problem in combinatorial auctions.
In this paper, we showed that our approach outperforms Casanova when the
time constraint is very hard but the problem space is really large.

Simulated Annealing (SA) is another similar approach. We prepared an SA-
based extension for our approach and we confirmed it increases the performance
when the problem size is relatively small. However, SA needs random-walk in
the early stage of its search and it decreases performance on short-time approx-
imation.

Genetic Algorithm is another similar approach. In [14], Avasarala et al. pro-
posed an approach for the winner determination problem on combinatorial auc-
tions. However, in [14], they noticed that their algorithm is not effective for
approximation in short time but is effective for obtaining higher optimal solu-
tions with enough computation time. Random-walk searching is really effective
approximation approach for combinatorial optimization problems. However, it is
not effective when there are such hard time constraints. We focused on solving
problems that are hard for such random-walk search approaches.

5.2 Approaches to Obtain Optimal Solutions

There have been a lot of works on obtaining optimal solutions for winner de-
termination in combinatorial auctions [12]. For example, CABOB [2] and CASS
[15] have been proposed by aiming to get the optimal allocations.

In [10], it is shown that the Casanova algorithm outperforms approximation
performance of CASS on winner determination. In this paper, we showed that
our approach outperforms Casanova in settings of a very large number of bids in
an auction. Therefore, our approach should also outperform CASS in the same
settings.

In [2], Sandholm et al. showed that CABOB outperforms CPLEX in several
settings. However, according to our comparison, our algorithm should outperform
CABOB in our settings. We argue that our approach is rather complementary to
those algorithms that are seeking exact optimal solutions. It is not fair to com-
pare their approximation performances when one guarantees obtaining optimal

182 N. Fukuta and T. Ito

solutions but the other does not. Our approximation approach only covers large
size problem settings that can only be handled by specialized approximation al-
gorithms. Our approach does not contribute to advances in developing algorithms
to obtain optimal solutions directly.

5.3 Greedy Approaches

Some researchers have noticed the better performance of simple greedy and
incremental approaches for very large-scale problems. For example, [16] noticed
the ease of approximation on very large auction problems. In [9], Lehmann et
al. mentioned that a simple greedy approach obtains very high results when the
auction problem is rather huge.

Also in [17], Kastner et al. mentioned a potential capability of a simple incre-
mental search approach to apply to very large auction problems and discussed
the sensitivity for the number of bids in an auction. However, there is little men-
tioned about a detailed comparison of actual performances for several different
types of datasets. In [17], they only presented their preliminary experimental
results on a dataset that is based on a single bid distribution.

Guo et al. [18] proposed similar local-search based algorithms and they ar-
gued that their approach is good for the settings of a large number of bids in
a combinatorial auction problem. However, in [18], they presented very limited
experimental results and little analysis or comparison to other high performance
algorithms. Also in [18], they did not propose an idea that is similar to our multi-
ple bid-weighting search. We argue that this multiple weighting search approach
is very effective and that it distinguishes our approach from others. Also, we
showed a detailed analysis of our experiments based on datasets generated by
possible different bid distributions. We also showed direct comparisons to Zurel’s
approach presented in [11].

5.4 Other Approaches

When we have some assumptions about models for valuation of bids, we can
utilize those assumptions for better approximation. Dobzinski et al. proposed
improved approximation algorithms for auctions with submodular bidders [19].
Lavi et al, reported an LP-based algorithm that can be extended to support the
classic VCG [20]. Those studies mainly focused on theoretical aspects. In contrast
to those papers, we rather focus on experimental analysis and implementation
issues. Those papers did not present experimental analysis of the settings with
a large number of bids as we presented in this paper.

Using sequential auctions [21] is another approach to overcoming the commu-
nication cost problem. Koenig et al. proposed a multiple-round auction mech-
anism that guarantees the upper bound of communication cost as fixed size k,
that is independent from the number of agents or items in the auction [22]. Al-
though our algorithm itself can approximate winners within a very short time
with a huge number of updated bids, the communication cost problem remains.

Performance Analysis about Parallel Greedy Approximation 183

6 Conclusions

In this paper, we analyze the performance our winner approximation algorithm
with slightly modified variants on numerous datasets. We confirmed our parallel
greedy approach performs well when the problem is difficult to be solved by an
approach with single bid weighting strategy (e.g., c = 0.5). Also we showed that
our parallel greedy improvement approach performs well when the computation
should be completed in very short time. Furthermore, our algorithm works better
than CPLEX when the problem is large but its computation should be completed
in short time. Especially, our GHC algorithm is effective to solve the issue of ‘no
solution’, that is when other anytime algorithms could take a moment to produce
an initial solution for the problem.

References

1. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press, Cam-
bridge (2006)

2. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: Cabob: A fast optimal algorithm
for winner determination in combinatorial auctions. Management Science 51(3),
374–390 (2005)

3. McMillan, J.: Selling spectrum rights. The Journal of Economic Perspectives (1994)
4. Fukuta, N., Ito, T.: Towards better approximation of winner determination

for combinatorial auctions with large number of bids. In: Proc. of The 2006
WIC/IEEE/ACM International Conference on Intelligent Agent Technology(IAT
2006), pp. 618–621 (2006)

5. Fukuta, N., Ito, T.: Short-time approximation on combinatorial auctions – a com-
parison on approximated winner determination algorithms. In: Proc. of The 3rd
International Workshop on Data Engineering Issues in E-Commerce and Services
(DEECS 2007), pp. 42–55 (2007)

6. Fukuta, N., Ito, T.: Periodical resource allocation using approximated combinato-
rial auctions. In: Proc. of The 2007 WIC/IEEE/ACM International Conference on
Intelligent Agent Technology (IAT 2007), pp. 434–441 (2007)

7. Fukuta, N., Ito, T.: Fast partial reallocation in combinatorial auctions for iterative
resource allocation. In: Proc. of 10th Pacific Rim International Workshop on Multi-
Agents (PRIMA 2007), pp. 196–207 (2007)

8. Fukuta, N., Ito, T.: Toward a large scale e-market: A greedy and local search
based winner determination. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS,
vol. 4570, pp. 354–363. Springer, Heidelberg (2007)

9. Lehmann, D., O’Callaghan, L.I., Shoham, Y.: Truth revelation in rapid, approxi-
mately efficient combinatorial auctions. Journal of the ACM 49, 577–602 (2002)

10. Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local
search. In: Proc. of the AAAI 2000, pp. 22–29 (2000)

11. Zurel, E., Nisan, N.: An efficient approximate allocation algorithm for combinator-
ial auctions. In: Proc. of the Third ACM Conference on Electronic Commerce (EC
2001), pp. 125–136 (2001)

12. de Vries, S., Vohra, R.V.: Combinatorial auctions: A survey. International Trans-
actions in Operational Research 15(3), 284–309 (2003)

13. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for
combinatorial auction algorithms. In: Proc. of EC 2000, pp. 66–76 (2000)

184 N. Fukuta and T. Ito

14. Avasarala, V., Polavarapu, H., Mullen, T.: An approximate algorithm for resource
allocation using combinatorial auctions. In: Proc. of the 2006 WIC/IEEE/ACM
International Conference on Intelligent Agent Technology (IAT 2006), pp. 571–578
(2006)

15. Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational complex-
ity of combinatorial auctions: Optimal and approximate approarches. In: Proc. of
the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp.
548–553 (1999)

16. Sandholm, T.: Algorithm for optimal winner determination in combinatorial auc-
tions. Artificial Intelligence 135, 1–54 (2002)

17. Kastner, R., Hsieh, C., Potkonjak, M., Sarrafzadeh, M.: On the sensitivity of incre-
mental algorithms for combinatorial auctions. In: Proc. International Workshop on
Advanced Issues of E-Commerce and Web-Based Information Systems (WECWIS
2002), pp. 81–88 (2002)

18. Guo, Y., Lim, A., Rodrigues, B., Zhu, Y.: A non-exact approach and experiment
studies on the combinatorial auction problem. In: Proc. of HICSS 2005, p. 82.1
(2005)

19. Dobzinski, S., Schapira, M.: An improved approximation algorithm for combinato-
rial auctions with submodular bidders. In: SODA 2006: Proceedings of the seven-
teenth annual ACM-SIAM symposium on Discrete algorithm, pp. 1064–1073. ACM
Press, New York (2006)

20. Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear pro-
gramming. In: 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2005), pp. 595–604 (2005)

21. Boutiler, C., Goldszmidt, M., Sabata, B.: Sequential auctions for the allocation of
resources with complementarities. In: Proc. of International Joint Conference on
Artificial Intelligence (IJCAI 1999), pp. 527–534 (1999)

22. Koenig, S., Tovey, C., Zheng, X., Sungur, I.: Sequential bundle-bid single-sale auc-
tion algorithms for decentralized control. In: Proc. of International Joint Confer-
ence on Artificial Intelligence (IJCAI 2007), pp. 1359–1365 (2007)

Online Market Coordination

Masabumi Furuhata1,2, Dongmo Zhang1, and Laurent Perrussel2

1 Intelligent Systems Laboratory, University of Western Sydney, Australia
2 IRIT-Université de Toulouse, France

Abstract. The aim of this paper is to deal with the problem of coordination for
online markets where a seller registers to an online market to sell an item. The
seller and the owner of the market then form an alliance to generate revenue
through online sales. However, the efficiency and stability of the alliance highly
relies on the contract that specifies the way to split the revenue and costs over
the alliane members. We consider some typical contracts and examine their in-
fluences on the behavior of the alliance. We introduce the key concept of alliance
coordinattion which characterizes the efficiency and stability of an online market.

1 Introduction

The explosive growth of online markets (or e-markets) has caused many changes in the
way business is done traditionally. An online market is a web-based facility with which
multiple traders can sell or buy goods and services through the Internet. Typical online
markets are eBay, Amazon, lastminute.com, and so on. Different from the traditional
markets, the partnership between traders and the market owner in an online market can
be loosely tied and dynamic in most situations. A trader can enter the market any time
and could leave the market any time also even during a transaction. The market owner
has poor information about the traders. In addition, an online market can normally ac-
commodate thousands of traders to trade in the market. Monitoring the behavior of each
trader is hard. Therefore the mechanism that coordinates the market owner and traders
in an online market is critical to the efficiency, effectiveness and stability of the market.

We consider a typical situation whereby a seller registers to an online market to sell a
certain product. The seller and the owner of the market then form an alliance of business
to generate revenue through online sales. However, the efficiency and stability of the
alliance relies on the mechanism (contract) that specifies the way to split the revenue
and costs over the members of alliance. Thus we are interested in alliance coordinating
contract that gives each party positive expected profit and there is no other contract
which gives a better profit to one party without sacrificing the other party’s profit. In
other words, there is no better contract such that both parties of the alliance are happy
to move to. Therefore the concept of coordination specifies the efficiency and stability
of an alliance.

We will consider some typical contracts and examine whether they coordinate an
online market alliance. One of the simplest and widely used contract in e-business is
fixed-fee charging, i.e. the market owner always gets a fixed amount from the revenue
regardless the amount of overall revenue and costs of the alliance. We prove that if
the costs of online market can be ignored, fixed-fee charging coordinates the alliance.

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 185–196, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

186 M. Furuhata, D. Zhang, and L. Perrussel

However, the result is no longer true if the costs of market owner are significant. This
result includes an important aspect of the online market. A typical example is to put an
advertisement works to increase revenue. Unlike the traditional supply chains, the cost
owner of advertisement can be the online market owner instead of the sellers. We show
that the property of contracts may change according to the effect of the costs using an
advertisement example. Next, we consider another common used contract – revenue
sharing, under which each party receives a certain percentage of revenue from the over-
all revenue. Unfortunately, the contract is unable to coordinate an alliance even if the
costs of the market owner are ignorable. Finally we represent profit sharing contract
that coordinates the online market alliance. Profit sharing contract predetermine a pro-
portion of sharing revenue among the alliance members. Meanwhile, the cost is shared
by the opponent’s proportion of the revenue. Hence it balances out the revenue and the
cost among the alliance members.

As far as we know, few works have tackled this problem in online market. In [1],
Netessine et al. consider the problem of coordination for online retailers that behave
similar to the traditional supply chains [2,3]. That is, online retailers buy products and
sell them online. In our model, we do not assume this behavior (the online market owner
do not buy these products). As a result, our proposal differs from the coordination in
the traditional supply chains.

In Section 2, we present the concepts of contract and alliance coordination based on
a generic market model. In Section 3, we detail the characteristics of online market.
In the next two sections, we formally characterize the properties of fixed-fee contract
(Section 4) and revenue-sharing contract (Section 5) in the context of online market. In
Section 6, we propose a contract that achieves alliance coordination for online market.
Finally, in Section 7, we discuss some related works and conclude the paper.

2 Alliance Coordinating Contracts

As soon as agents commit to a joint action in order to obtain some revenues they have to
define the way they will share these revenues. This way is usually detailed in a contract
that leads agents to establish an alliance. The aim of a contract is to detail the revenue
for each member of the alliance. Knowing the contract, members of the alliance will
determine their actions. In the following, we formally describe all these basic concepts.

2.1 Contract in Alliance

Consider an alliance A in which there are n agents. Each agent i (1 ≤ i ≤ n) has

a strategy space Si. Let S =
n∏

i=1
Si. Each agent i chooses a strategy σi ∈ Si. Let

σ = (σ1, · · · , σn) ∈ S be a strategy profile and σ−i be the strategy profile for all
agents except i. We assume that alliance A earns an alliance revenue as the result of
the strategic choices of all agents in A. Let R : S → � be a function representing
alliance revenue. In many cases, the strategy is interpreted as investments, efforts, or
actions incurring costs to generate revenue. Since the alliance revenue is generated as
a result of joint-work among the agent, the way to share the revenue is significant for

Online Market Coordination 187

the alliance members. In general, the way of sharing is specified in a contract defined
as follows.

Definition 1. A contract of an allianceA is a function τ : S ×� → �n which satisfies∑
i∈A

τi(σ, r) = r for any σ ∈ S and r = R(σ).

That is, w.r.t. an alliance revenue, a contract defines individual revenues for each agent
based on the strategic choices. We assume the alliance revenue is non-negative. Each
individual revenue may include fees and incentives, hence it may be negative.

Example 1. Consider a joint investment alliance on natural resource development con-
sisting of three investors, A = {a, b, c}. Let σ be a set of monetary investments of all
alliance members. According to the investments, natural resource r = R(σ) is mined.
Suppose all members agree on the following contract before the investments: Each
share of r is proportional to the individual amount of investment; that is τi(σ, r) =

r

(
σi/

∑
i∈A

σi

)
for all i.

The above example is an ideal case, since the profits are shared among the alliance
members. However, the profit-sharing is not always effective or implementable in in-
dustry. For instance, an individual cost cannot always be associated to specific alliance
revenue or cost information is usually private information.

Definition 1 shows that individual revenues are based on strategies and contracts. It
means that agents may choose their strategies with respect to the contract. In order to
choose the strategies agents need criteria to evaluate their profits in terms of strategies
and contracts. Let πτ

i (σ) be the profit of agent i at strategy profile σ and contract τ .
Profit is based on revenue and cost. Let ci(σi) be the cost function of agent i. Then the
profit function is πτ

i (σ) = τi(σ, r) − ci(σi). We assume that agents choose their own
strategies to maximize their own profits. Since the profit of agent i depends on the other
agents’ strategies, the evaluation of profits is explained by Nash equilibrium. Formally:

Definition 2. Given alliance A, contract τ , the set of all strategy spaces S, and profits
{πτ

i (σ)}i∈A, the profile σ̂ ≡ (σ̂1, · · · , σ̂n) is called a Nash equilibrium if for all i ∈ A,
and for all σi ∈ Si, πτ

i (σ̂) ≥ πτ
i (σi, σ̂−i).

It means that at Nash equilibria, no agent can increase its profit by changing strategies
w.r.t. contract τ . However, even if we have a Nash equilibrium, the overall profit may not
be maximized. Alliance optimal profit is gained by Pareto optimal contract as follows.

Definition 3. A contract τ is Pareto optimal if there is no other contract τ ′ such that
for any strategy profile σ ∈ S such that πτ ′

i (σ) ≥ πτ
i (σ) for all i with at least one strict

inequality.

It means that if a contract is Pareto optimal, then there is no other contract where all
the agents’ profits can increase. Notice that our definition of Pareto optimal contract
avoids the case where increasing one agent’s profit is possible without decreasing others
agents’ profits. To investigate Pareto optimal contracts, we have to compare profits for
each strategy profile, each contract and each agent. In order to simplify this task, we

188 M. Furuhata, D. Zhang, and L. Perrussel

introduce the notion of alliance optimal profit. Let the alliance profit be π(σ) = R(σ)−
C(σ), where C(σ) is a linear combination of each cost ci(σi). Let the alliance optimal
profile be σ∗ ≡ (σ∗

1 , · · · , σ∗
n) such that σ∗ = arg max

σ∗∈S
π(σ). The following proposition

shows how to check Pareto optimality of contracts.

Proposition 1. Let σ∗ be an alliance optimal strategy profile and let σ̂τ be the unique
Nash equilibrium under a contract τ . If σ̂τ = σ∗, then contract τ is a Pareto optimal.

Proof. The assumptions of the proposition entail that we have
∑
ı∈A

πτ
i (σ̂τ) = R(σ̂τ)−∑

i∈A
ci(σ̂τ) = R(σ∗) − C(σ∗) = π(σ∗). Since a strategy profile σ∗ maximizes the

alliance profit, there is no other way to increase the alliance profit. Hence, contract τ is
Pareto optimal. �

Choosing contract and setting its parameters is a way to give incentive to agents for
their participation in an alliance. For instance, contract may guarantee some revenue.
This is especially significant if demand has to be considered as uncertain. Taking into
account uncertainty of demand is mandatory, since agents have to decide their behavior
before they realize the actual demand. Decision criteria of agents are dependent on risk
tendencies. Since we assume all the agents are risk neutral, these decisions are only
dependent on the expected profits. We denote E as expectation for stochastic variables.
Based on the above settings, we define an alliance coordinating contract as follows.

Definition 4. Given alliance A, contract τ coordinates alliance A, if it satisfies the
following conditions,

1. contract τ is Pareto optimal,
2. there exists a strategy profile σ such that E [πτ

i (σ)] > 0 for all i ∈ A.

The definition shows that our interested contracts must be acceptable by every agents.
That is, in addition to the Pareto optimality, the alliance coordination requires that all
expected profits should be positive; this constraint is called participation constraint.

3 Online Market Model

In the previous section, we have shown the definition of contract and the alliance co-
ordinating contract. Let us instantiate this framework in the context of online market.
We consider an online market where the sellers and buyers trade items. In this online
market, an alliance consists of an online market owner and a seller.

For strategic choices of the two alliance members, we consider the seller chooses the
listing quantity of a single type of items on the online market and the online market
owner chooses advertisement amount. As mentioned, we suppose that the sales depend
on a given stochastic demand at given price. The revenue is shared between the two
alliance members according to the contract. The seller directly ships the item to the
buyers and thus buyers are not considered as members of the alliance.

Formally, let A = {o, s} be the alliance such that o is the online market owner and
s is the seller. The strategy of o is to choose advertisement amount a and the strat-
egy of s is to choose listing quantity q. For a given price p, we assume a random de-
mand X(a) which is affected by advertisement amount a. Let F be the cumulative

Online Market Coordination 189

distribution function of the demand and f be its probability distribution function. If
the listing quantity is q and the advertisement amount is a, we obtain the expected
revenue R(q, a) = pQ(q, a) where Q(q, a) is the expected sales quantity such that
Q(q, a) = E [min {X(a), q}]. It means that if listing quantity q is greater than demand,
then sales quantity is a demand, otherwise the sale quantity is inventory quantity q.
Stochastic demand entails that E [min {X(a), q}] and thus Q(q, a) are equal to:

Q(q, a) =
∫ q

0
xf(x|a)dx +

∫ ∞

q

qf(x|a)dx. (1)

By differentiating Q(q, a) w.r.t. q, we get that the increase of inventory quantity for
one unit results in the increase of the expected sales quantity less than one unit (since
∂Q(q,a)

∂q = 1 − F (q|a) < 1). For the advertisement effect, we assume positive effect

on the expected sales (that is ∂Q(q,a)
∂a ≥ 0). Furthermore, we assume that the expected

sales is diminishing concave (i.e. ∂2Q(q,a)
∂a2 ≤ 0 and ∂3Q(q,a)

∂a3 ≥ 0).
For online trades, we consider the following costs for online market owner o and

seller s. For agent o the cost is equal to the fixed cost cō plus advertisement cost. Let

g(a) be a cost function for advertisement a where g(0) = 0, dg(a)
da > 0 and d2g(a)

da2 ≥ 0.
In other words, the cost of advertisement and the marginal advertisement cost both
increase w.r.t. advertisement amount. For seller s, at the time of listing quantity on
the online market, we assume that items are already prepared as inventories with unit
cost cp. We also consider fixed cost for seller s as cs̄ and shipment cost cs per unit.
For simplicity, we do not consider either salvage value, stock out penalty, or inventory
holding cost.

At the opposite of listing quantity, advertisement can be null to generate revenue.
In such a case, the alliance strategy (q, a) is equal to (q, 0) and whenever it is clear
q stands for the strategy. Let us detail the case where there is no advertisement. By
choosing listing quantity q, the alliance expects to earn revenue r = R(q) = pQ(q) at
given price p. Suppose the alliance agrees on a contract τ , the expected profit of online
market owner o is

E [πτ
o] = τo(q, r) − cō (2)

and the expected profit of seller s is

E [πτ
s] = τs(q, r) − csQ(q)− cpq − cs̄ (3)

These two functions show that the profits of alliance members depend on the choice of
listing quantity by the seller and of the contract. Meanwhile, the choice of the listing
quantity incurs variable costs for the seller however it does not incurs any variable costs
for agent o. This setting is very unique for online market compared to the traditional
supply chains [2]. While physical distributions are executed among alliance members
that incur variable costs in the traditional supply chains, online market does not incur
any variable costs due to direct shipment from the seller to the buyer.

Based on the above settings, we first show that there exists an alliance optimal profit
for this model.

190 M. Furuhata, D. Zhang, and L. Perrussel

Lemma 1. Let q∗ be an alliance optimal listing quantity in the online market model
without advertisement effect. There exists a unique optimal listing quantity q∗ =
F−1

(
p−cs−cp

p−cs

)
in the online market model.

Proof. According to the definition of the profit, we obtain the alliance expected profit
as follows, E [π(q)] = (p− cs)Q(q)− cpq− (cō + cs̄). The first-order derivative of the
expected profit is

dE [π(q)]
dq

= (p− cs)(1 − F (q))− cp (4)

The second-order derivative of Equation (4) is d2E[π(q)]
dq2 = −(p−cs)f(q). Since f(q) is

positive, we obtain that the alliance profit function is concave in quantity q. Therefore,
the alliance optimal quantity q∗ must be the solution of Equation (4) such that q∗ =
F−1

(
p−cs−cp

p−cs

)
. �

Lemma 1 shows that the unique alliance optimal quantity exists in this model. There-
fore, an equilibrium listing quantity under a certain contract must be equal to q∗. Based
on this optimal quantity, we investigate the alliance coordinating contracts in the case
of no advertisement. We focus on an interesting case where E [π(q∗)] > 0.

Now let us relax the assumption of no advertisement. Taking into account advertise-
ment entails to redefine the Pareto optimality checking, since the alliance profit function
is different. The alliance expects to earn revenue r = R(q, a) = pQ(q, a) at given price
p. Suppose the alliance agrees on a contract τ , the expected profit of agent o is

E [πτ
o (q, a)] = τo(q, a, r) − cō − g(a), (5)

and the expected profit of agent s is

E [πτ
s (q, a)] = τo(q, a, r)− (1− α)csQ(q, a)− cpq − cs̄ (6)

In order to check the alliance coordination, we define the expected alliance profit as
follows,

E [π(q, a)] = (p− cs)Q(q, a)− cpq − (cō + cs̄)− g(a). (7)

According to the definitions of Q, Equation (7) is concave in listing quantity q and
a. Therefore, there exists an alliance optimal pair {q∗, a∗}. Notice that this pair is not
necessary unique. We suppose that for any given fixed listing quantity q, there exists
optimal advertisement amount a∗(q). Formally, this is represented by the following
first-order condition, similarly to [4,3]:

∂π(q, a∗(q))
∂a

= (p− cs)
∂Q(q, a∗(q))

∂a
− dg(a∗(q))

da
= 0 (8)

For this online market model, we now investigate the properties of alliance coordinat-
ing contracts. We focus on two typical contracts: fixed-fee contract and revenue-sharing
contract. For these two contracts, we study the advertisement effect.

Online Market Coordination 191

4 Fixed-Fee Contract

Fixed-fee contract is employed in many online markets. Fixed-fee contract is a con-
tract where one agent always gets the same individual revenue regardless the alliance
revenue, formally:

Definition 5. A contract τ of an alliance A is called to be fixed-fee contract by agent
i0 if it satisfies the following conditions: for any σ ∈ S and r ∈ �,

1. τi0(σ, r) = α
2.

∑
i
=i0

τi(σ, r) = r − α

where α ∈ � is constant and interpreted as the charging fee.

Under fixed-fee contract, agent i0 charges fixed-fee α to the other agents and the returns
of the alliance is taken by agents except for agent i0. In the context of online market,
we have τo(σ, r) = α and τs(σ, r) = r − α s.t. σ = (q, a). Notice that charging a
membership fee is a similar contract.

Example 2. Consider an online market where sellers sell second-hand items to buyers.
In this online market, the owner o charges $2 fixed-fee to seller s for each listing. The
contract can be represented as follows:

τo(σ, r) = 2; τs(σ, r) = r − 2.

It means for any seller’s strategy the market owner’s share of revenue is constant. This
contract is used in eBay BuyItNow option.

4.1 No Advertisement

The following proposition shows that the online market model without advertisement
effect achieves alliance coordination.

Proposition 2. Let α be a fixed-listing fee of the online market. Fixed-fee contract τ
achieves alliance coordination in online market model without advertisement effect, if
cō < α < (p− cs)Q(q∗)− cpq

∗ − cs̄.

Proof. If q > 0, under fixed-fee contract, the expected profit of online market owner o
and seller s are respectively,

E [πτ
o (q)] = α− cō (9)

E [πτ
s (q)] = r − α− csQ(q)− cpq − cs̄

= (p− cs)Q(q)− cpq − α− cs̄, (10)

otherwise, we have πτ
o (q) = πτ

s (q) = 0. Since the expected profit of online market
owner o is always α if q > 0, the online market owner concerns whether the seller
lists items at quantity q > 0 or not. Hence, we check the optimal listing quantity for
seller s denoted as q̂s. By differentiating the profit function of seller s w.r.t. q, we obtain
dE[πτ

s (q)]
dq = (p − cs)(1 − F (q)) − cp. According to Equation (4), we get dE[πτ

s (q)]
dq =

192 M. Furuhata, D. Zhang, and L. Perrussel

dE[π(q)]
dq and according to Lemma 1, there is a unique alliance optimal quantity q∗ in

this model. Thus we obtain q̂s = q∗. For participation constraints, Equation (9) and (10)
must be positive at q = q∗. Therefore, fixed-fee contract achieves alliance coordination,
if fixed-fee α satisfies cō < α < (p− cs)Q(q∗)− cpq

∗ − cs̄. �

Proposition 2 shows that the alliance coordination is due to the cost structure of the
online market owner which does not incur variable cost for the listing quantity. As long
as the fee is greater than the owner’s cost and lower than the seller’s expected profit, the
alliance coordination holds.

4.2 Advertisement Effect

According to the advertisement effect, strategies are now pairs (q, a) and the contracts
are τo(q, a, r) = α and τs(q, a, r) = r − α. The following proposition shows that
fixed-fee contract does not achieve alliance coordination.

Proposition 3. Fixed-fee contract τ does not achieve alliance coordination in the on-
line market model with advertisement effect.

Proof. Under fixed-fee contract τ , if q > 0 , according to Equation (5) and the definition
of the contract, the profit function of online market owner o is: E [πτ

o (q, a)] = α− cō−
g(a). The first-order derivative of profit function of online market owner o w.r.t. a is
dπo(a)

da = − dg(a)
da < 0. Hence, under fixed-fee contract, online market owner o does

not have incentive to place any positive advertisement amount which is the assumption
of the online market model without advertisement effect shown in the previous section.
Therefore, fixed-fee contract does not achieve alliance coordination in this model. �

According to Proposition 3, seller s enjoys a benefit of advertisement effect as a free
rider under fixed-fee contract. Furthermore, the online market owner does not have any
incentive to place advertisement in a context of alliance coordination.

We have shown that fixed-fee contract achieves alliance coordination in the limited
case where advertisement is not considered. The next question we address is whether
the other popular contract, revenue-sharing contract, achieve alliance coordination.

5 Revenue-Sharing Contract

The following contract, revenue-sharing contract, is frequently used in the online mar-
kets. Individual revenue is a proportion of the alliance revenue [3].

Definition 6. A contract τ of an alliance A is called to be revenue-sharing contract if
there exists α1, · · · , αn s.t.

∑
i∈I

αi = 1 and for any (σ1, · · · , σn) ∈ S and r = R(σ),

τi(σ1, · · · , σn, r) = αir for all i

Example 3. Consider an online music market for selling songs. The alliance consists of
online music store o and music label s. The contract specifies the following royalties on
revenue r: 20% of r for agent o and 80% for agent s. Hence, the contracts are:

τo(σ, r) = 0.20r; τs(σ, r) = 0.80r

Online Market Coordination 193

5.1 No Advertisement Effect

Under revenue-sharing contract, the online market owner charges a certain portion of
the sales amount of the seller. Portion α ranges in 0 < α < 1. Hence τo(q, r) = αr and
τs(q, r) = (1 − α)r. The following proposition shows that this contract does achieve
alliance coordination.

Proposition 4. Let α be a portion that online market owner o earns from the revenue r.
Revenue-Sharing contract τ does not achieve alliance coordination in the online market
model without advertisement effect.

Proof. Under revenue-sharing contract, the expected profit of online market owner o is

E [πτ
o (q)] = τo(q, r)− cō

= αpQ(q)− cō

and the expected profit of seller s is

E [πτ
s (q)] = τo(q, r)− csQ(q)− cpq − cs̄

= (1 − α)pQ(q)− csQ(q)− cpq − cs̄.

The first-order condition for the profit maximizing quantity of seller s is dE[πτ
s (q)]

dq =
((1 − α)p − cs)(1 − F (q)) − cp = 0 . Let q̂s be the profit maximizing quantity of

the seller under revenue-sharing contract. We obtain q̂s = F−1
(

p(1−α)−cs−cp

p(1−α)−cs

)
> q∗.

Hence, revenue-sharing contract does not achieve alliance coordination. �

As mentioned, the online market owner does not incur any variable cost or any procure-
ment cost. Therefore, revenue-sharing contract does not achieve alliance coordination.
Even though the proposition shows that revenue-sharing contract is not an alliance co-
ordinating contract, it is a popular contract in online market. Parameter α is usually
set at a small value in the online markets. Therefore, it entails that seller s may list
slightly greater quantities than the alliance optimal quantity. This means that the listed
quantity entailed by a revenue-sharing contract may be greater than the one entailed by
fixed-fee contract. Therefore, the online market owner may sell greater quantities under
revenue-sharing contract compared to fixed-fee contract.

5.2 Advertisement Effect

Let α be the online market owner o’s portion of revenue. The contracts are τo(q, a, r) =
αr and τs(q, a, r) = (1 − α)r. Again we show that revenue-sharing contract does not
achieve alliance coordination.

Proposition 5. Revenue-sharing contract τ does not achieve alliance coordination in
the online market model with advertisement effect.

Proof. Under revenue-sharing contract τ , for a given listing quantity q, let âo(q) be
the optimal advertisement amount for online market owner o corresponding to listing
quantity q. It entails that the first-order condition represented in Equation (8) holds

194 M. Furuhata, D. Zhang, and L. Perrussel

for (q, âo(q)). Hence, for the optimal profit function πτ
o , we have ∂E[πτ

o (q,âo(q))]
∂a =

α(p − cs)
∂Q(q,âo)

∂a − dg(âo)(q)
da = 0 . According to Equation (8) , if âo = a∗ we have

∂E[πτ
o (q,âo)]
∂a < ∂E[π(q,a∗(q))]

∂a . Thus we have âo = a∗. Hence, revenue-sharing contract
does not achieve alliance coordination in the case of individual advertisement. �

According to Propositions 4 and 5, revenue-sharing contract does not achieve the al-
liance coordination regardless of advertisement effect. This is mainly due to the lack of
relation between marginal cost and marginal profit. In the next section, we propose a
contract that takes care of this relation.

6 Profit Sharing Contract

The aim of this contract is to balance out revenue and variable costs between alliance
members. That is each member does not only consider its cost to define its profit, but
also the other members’ costs. The revenue is r = R(σi, σj). Let χi > 0 be a parameter
for setting at first the portion of revenue for agent i and, second the portion of cost that
agent j charges to agent i. We assume that

∑
i∈A

χi = 1. The following contract is in the

scheme of profit sharing contract in [5],

Definition 7. Let χi > 0 be a portion parameter of profit sharing contract τ . A contract
τ of an alliance A is a profit sharing contract if τi(σi, σj , r) = χir − χicj(σj) +
χjci(σi) for all i ∈ A.

In the context of online market, profit sharing contract is interpreted as follows:

τo(q, a, r) = χr − χcsS(q, a)− χcpq + (1− χ)g(a)
τs(q, a, r) = (1 − χ)r + χcsS(q, a) + χcpq − (1− χ)g(a)

This profit sharing contract is a combination of revenue-sharing, sales discount, list-
ing incentive and advertisement cost sharing. The following theorem shows that profit
sharing contract achieves alliance coordination.

Theorem 1. Profit sharing contract τ achieves alliance coordination in the online mar-
ket model.

Proof. W.r.t. τ , the profit function for online market owner o is

E [πτ
o (q, a)] = χ((p− cs)S(q, a)− cpq − g(a))− cō, (11)

and the profit function of seller s is

E [πτ
s (q, a)] = (1 − χ)((p− cs)S(q, a)− cpq − g(a))− cs̄. (12)

By differentiating Equation (11) w.r.t. a, we obtain a marginal profit of online mar-

ket owner w.r.t. advertisement ∂E[πτ
o (q,a)]
∂a = χ

(
(p− cs)

∂S(q,a)
∂a − dg(a)

da

)
. Since (p −

Online Market Coordination 195

cs)
∂S(q,a)

∂a − dg(a)
da = ∂E[π(q,a)]

∂a , we have ∂E[πτ
o (q,a)]
∂a = χ∂E[π(q,a)]

∂a . Therefore, it satis-
fies the first-order condition shown in Equation (8). A condition to satisfy participation
constraint is Equation (11) and (12) must be positive at a pair {q∗, a∗} as follows:

E [πτ
o (q∗, a∗)] = χ ((p− cs)S(q∗, a∗)− cpq

∗ − g(a∗))− cō > 0
E [πτ

s (q∗, a∗)] = (1− χ) ((p− cs)S(q∗, a∗)− cpq
∗ − g(a∗))− cs̄ > 0

Therefore, we obtain that profit sharing contract achieves alliance coordination, if

cō

(p− cs)S(q∗, a∗)− cpq∗ − g(a∗)
< χ <

(p− cs)S(q∗, a∗)− cpq
∗ − g(a∗)− cs̄

(p− cs)S(q∗, a∗)− cpq∗ − g(a∗)

�

Profit sharing contract charges their costs to the alliance partner with prefixed portion
each other. At the same time, based on the opposite portion, the revenue is shared.
According to Theorem 1, profit sharing contract balances out the costs of the alliance
members by sharing them. So far, we are not aware of any online market companies
that implement this contract. This is because to obtain cost information from the seller
is costly and to reveal online market’s cost information to the sellers is too sensitive.

7 Conclusion and Related Work

In this paper, we have at first presented the notion of contract and alliance coordination.
Next we have shown how this framework can be used to describe a specific kind of
market namely online market. Then, we have studied behavior of this market w.r.t two
popular contracts: fixed-fee contract and revenue-sharing contract. We have shown that
it is difficult to obtain coordination for these two contracts: only fixed-fee contract with
no advertisement achieves alliance coordination. Revenue-sharing contract leads sellers
to list greater quantities compared to the case of fixed-fee contract; this property may
be a desirable one for gaining market shares. We finally exhibit a profit sharing contract
that enables to achieve coordination. Even if this contract is difficult to implement, it
may be used for setting more general conditions of alliance coordination, since this
contract characterizes the aspects of efficiency and stability. For instance, profit sharing
can be approximated to revenue-sharing plus fixed-fee in very limited cases. However,
profit sharing is able to indicate the revenue-sharing plus fixed-fee contract’s parameter
settings. This contract is actually implemented by eBay’s auction.

Our definition of contract slightly differs from the one given by Gan, et al. in [6].
They define a contract as a proportion of the alliance revenue. Their definition mainly
focuses on revenue-sharing contract. Our framework is more suitable for describing
different types of contract such as fixed-fee contract.

We have assumed that all agents are risk neutral similar to others settings [2,3,1].
Therefore, we consider that the decision making criteria of the agents are their expected
profits. If we want to consider risk averse agents, our definition of alliance coordination
may be extended for taking it account utilities of agents as proposed in [6,7].

We remark that there is a significant difference between the concepts of coalition for-
mation in game theory and alliance coordination we have discussed in this paper, though

196 M. Furuhata, D. Zhang, and L. Perrussel

both of them concern about how a group of agents share the gains from cooperation.
Coalition games are described in terms of payoffs of coalitions (subgroups) rather than
payoffs of individuals [8]. The main concern of a player in a coalition game is which
subgroup he/she should join in order to maximize his/her outcomes. In our model, we
assume that all agents are in the same alliance, i.e., a grand coalition. The concern of
an agent is how much he/she should invest to the coalition to get the maximal return,
given a certain coordination contract.

In this model, we did not consider some specific aspects of online markets like non-
cooperative shipment which is the most significant problem in eBay like market accord-
ing to [9]. In order to deal with this problem, it is siginificant to embed the concept of
reputation into this model. We set this point as future work.

In online market, a key question is to know how to attract traders. For the online
market owners such as eBay or lastminute.com, it involves uncertain and incomplete
information. As a consequence, it is not always possible to find the optimal strategies.
In order to find the solutions for this complex problem, Trading Agent Competition in
Market Design (TAC-MD) has been proposed as a simulation test-bed [10]. We can
view the problems of TAC-MD as a coordination problem and thus as future work we
want to show how our proposal fits the TAC-MD framework.

References

1. Netessine, S., Rudi, N.: Supply chain structres on the internet and the role of marketing-
operations interaction. In: Simchi-Levi, D., Wu, D., Shen, Z.M. (eds.) Handbook of Qan-
titative Supply Chain Analysis: Modeling in the E-Business Era, pp. 607–641. Kluwer,
Dordrecht (2004)

2. Cachon, G.P.: Supply chain coordination with contracts. In: de Kok, A., Graves, S.C. (eds.)
Supply Chain Management: Design, Coordination and Operation, pp. 229–340. Elsevier,
Amsterdam (2003)

3. Cachon, G., Lariviere, M.: Supply chain coordination with revenue-sharing contracts:
Strengths and limitations. Management Science 51(1), 30–44 (2005)

4. Petruzzi, N.C., Dada, M.: Pricing and the newsvendor problem: A review with extensions.
Operations Research 47(2), 183–194 (1999)

5. Jeuland, A.P., Shugan, S.M.: Managing channel profits. Marketing Science 2(3), 239–272
(1983)

6. Gan, X., Sethi, S.P., Yan, H.: Coordination of supply chains with risk-averse agents. Produc-
tion and Operations Management 13(2), 135–149 (2004)

7. Shum, W.S.: Effective Contracts in Supply Chains. PhD thesis, the Sloan School of Manage-
ment, Massachusetts Institute of Technology (2007)

8. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)
9. Resnick, P., Zeckhauser, R.: Trust among strangers in internet transactions: Empirical analy-

sis of ebay’s reputation system. In: Baye, M.R. (ed.) The Economics of the Internet and
E-Commerce, vol. 11, pp. 127–157. Elsevier Science, Amsterdam (2002)

10. Niu, J., Cai, K., Parsons, S., Gerding, E., McBurney, P.: Characterizing effective auction
mechanisms: Insights from the 2007 tac market design competition. In: AAMAS, pp. 1079–
1086 (2008)

Towards an Evaluation Framework for MAS
Software Engineering

Emilia Garcia, Adriana Giret, and Vicente Botti

Universidad Politecnica de Valencia, Camino de Vera, Valencia, Spain
mgarcia@dsic.upv.es, agiret@dsic.upv.es, vbotti@dsic.upv.es

Abstract. Recently a great number of methods and frameworks to de-
velop multiagent systems have appeared. It makes difficult the selection
between one and another. Because of that the evaluation of multiagent
system software engineering techniques is an open research topic. This
paper presents a questionnaire for evaluating and comparing develop-
ment methods and tools.

Keywords: Multiagent systems, software engineering, development
tools.

1 Introduction

Due to the great number of methods and frameworks to develop multiagent sys-
tems (MAS), the selection of one or another multiagent development tool is a
very hard task. In the last few years the evaluation of MAS software engineer-
ing techniques has gained the research community attention. Some works [5,7]
focus their efforts on the analysis of methodologies, but do not analyze the tools
that provide support for these methodologies. Other works like [1,8] analyzes
environments for developing software agents, but do not take into account the
gap between the methodology and modeling tool. Works like [2,9] only analyze
methodologies but they do not only provide a list of concepts to analyze. They
facilitate the evaluation task providing a questionnaire which usage makes the
answers more concrete and simplifies the evaluation process.

In our work we try to contribute with a framework to evaluate MAS soft-
ware engineering development methods and tools that deals with those open
issues in the field of software engineering MAS evaluation. The initial results of
the definition of the evaluation criteria are presented in [3] and validated ana-
lyzing the Ingenias methodology and development kit in [4]. The main goal of
this paper is to complete our previous work offering an improved and updated
selection of the evaluation criteria and defining a complete evaluation question-
naire that will help in facilitating, standardizing and simplifying the evaluation
task.

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 197–205, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

198 E. Garcia, A. Giret, and V. Botti

2 Definition of the Evaluation Criteria

From a software engineering perspective, solving a problem should encompass the
steps from problem realization, requirements analysis, architecture design and
implementation [5]. In order to cover all the necessary method characteristics
and tool features for all the stages of the development process, the evaluation
criteria are structured in two main parts (See Figure 1): (1) Methodology and
Modeling language; (2) Development tool that involves the Modeling tool and
the Implementation tool. Furthermore, these criteria focus their attention in the
gap between the theoretical guidelines of the methodologies and what can be
modeled in the MAS development environment; and the gap between the model
and the final implementation. The rest of the section details the evaluation
criteria following this classification. In order to get a complete and easy to use
evaluation framework the evaluation criteria is presented as a questionnaire.
Due to the space limitations, only a brief introduction to each category and
some remarks about some criteria is presented.

2.1 Methodology and Modeling Language

This section defines a process for evaluating the methodologies and the model-
ing languages, comparing strengths, weaknesses and identifying ways to improve
on a particular methodological feature. The methodology evaluation criteria is
divided into five categories (Figure 1): Concepts and properties, Model related
criteria, Process related criteria, Pragmatic features criteria, Supportive feature
criteria. This classification is based on [9,5,10].

Concepts and properties: This section analyzes whether or not a methodol-
ogy adheres to the features of agents and MAS (Table 1). Despite the confusion
in the definition of what is an agent and a MAS, these issues are commonly
accepted and used [6].

Concepts
and

Properties

Model
related
criteria

Process
related
criteria

Pragmatic
features
criteria

Methodology and Modeling language

Development tool

Modeling tool Implementing tool

Technical
issues

Economical
aspects

Gap methods-
modeling tool

Gap modeling-
implementation

Supportive
features
criteria

Fig. 1. Evaluation criteria classification

Towards an Evaluation Framework for MAS Software Engineering 199

Table 1. Concepts and proprieties questionnaire

Agent architecture: Is the methodology or the modeling language focused on an specific agent
architecture?
Platform dependency: Is the development phase of the methodology focused on a specific de-
ployment platform?
Autonomy: Can the models support and represent the autonomous feature of agents? Which
technology is used to represent it?
Reactivity: Can the models support and represent the agent’s ability to respond in a timely
manner to changes in the environment?
Proactiveness: Can the models support and represent the agent’s ability to pursue goals over
time?
Cooperative behaviour: Can the models support and represent the ability to work together with
other agents to achieve a common goal?
Communication ability: Can the models support and represent the ability to communicate with
other agents?
Communication language: The communication language used by the agents is based on:
O Signals (i.e low level languages) O Speech acts O Other, please specify
Mental attitudes: Can the models support and represent the use of agent mental attitudes like
beliefs, desires and intentions?
Adaptability: Can the models support and represent the ability of the agents to learn and improve
with experience?
Temporal continuity: Can the models support and represent temporal continuity of agents?
Deliberative capability: Can the models support and represent the capability of the agent to
select some possible plans to solve a problem and deliberate to choose the most appropriate in
each situation?

Model related criteria: The criteria presented in Table 2 deal with various
aspects of a methodology’s models and notational components, including the
concepts represented by the models, and their expressiveness and other software
engineering issues.

Table 2. Model related criteria questionnaire

Modeling language representation: Which kind of representation is used?
O Formal O Informal O Mixed
Metamodels: Is the methodology based on metamodels?
Kind of models: Which models are used? Please add a brief description of each one.
Models dependence: Is there a high dependence between the models?
Complete notation: Can the modeling language support and represent all the concepts expressed
by the methodology?
Concurrency: Can the models support and represent concurrent processes and the synchroniza-
tion of concurrent processes?
Clarity: Is the number of concepts expressed in a single diagram manageable?
Completeness: Can the models support and represent all necessary concepts that describe the
associated methodologies?
Protocols: Can the models support and represent protocols, i.e., the definition of the allowable
conversations in terms of the valid sequences of messages?
Different levels of abstraction: Does the methodology and its models provide support for model
at various levels of abstraction and detail?
Human Computer Interaction: Does the methodology and its models provide support for model
user interface and system-user interaction?
Modularity: Does the methodology and its models provide support for modularity of design
components?
Extensible: Is the modeling language extensible?
Environment: Does the modeling language provide support for model the environment of the
agents and the agent effectors and perceptors?
Dynamic environment: Does the modeling language provide support for model environment
changes?
Resources: Does the modeling language provide support for model agent external and internal
resources, and their restrictions?

200 E. Garcia, A. Giret, and V. Botti

Process related criteria: The questions presented in Table 3 analyze how the
methodology covers the different stages of the development process and which
guidelines offers.

Table 3. Process related criteria questionnaire

Development lifecycle: Which software-development process follows the methodology?
O Iterative O Waterfall O Others
Coverage of the lifecycle: What phases of the lifecycle are covered by the methodology? Which
is the level of support of each phase?
Development approach: Which development approach is supported?
O Top-down approach O Bottom-up approach O Both O Indeterminate
Approach towards MAS development: Is the methodology OO-based or knowledge-engineering
based?
O OO-based O Knowledge-engineering based O Other
Application domain: Is the methodology applicable to a specific application domain?
Model-central element: Which is the model-central element?
O Agents O Organizations O Services O Other
Guidelines: Does the methodology and the modeling language offer guidelines for the following
issues?
- Consistency guidelines: Are there guidelines and techniques for consistency checking both within
and between models?
- Consistency between levels of abstractions: Are there guidelines to ensure consistency between
levels of abstractions within each model and between different models?
- Estimating guidelines: Are there guidelines to estimate the number of agents required, the im-
plementation time or other useful features?
- Support for decisions: Are there guidelines about when to move between phases?
- Model derivation: Are there guidelines to transform models into other models, or partially create
a model from information present in another?
- Support for verification and validation: Does the methodology contain rules to allow for the
verification and validation of correctness of developed models and specifications?
Client communication: Does the methodology provide support and facilitate communication
between designers and users?
Models Reuse: Does the methodology provide, or make it possible to use, a library of reusable
models?

Pragmatic related criteria: The criteria presented in Table 4 assess software
engineering features that evaluate the techniques provided by the methodology
for the execution of its process steps and for the development of its models.

Table 4. Pragmatic related criteria questionnaire

Unambiguity: Has the notation of the modeling language unambiguous mapping of concepts to
symbols, uniform mapping rules and no overloading of notation elements?
Preciseness of models: Are the mapping between notation and semantics clearly defined?
Expressiveness: Are the models capable of capturing each concept at a great level of detail?
Consistency checking: Does the model representation allow for consistency checking between
their elements?
Notation simplicity: Is notation semantically and syntactically simple across models?
Refinement: Does the methodology and its models provide support for a refinement-based design
approach?
Documentation: Are the use and features of the tool well documented?
Examples Is any complete example of the use of the tool available? MASDK.

Supportive related criteria: The criteria presented in Table 5 include high-
level and complementary features of MAS and the offered support to the inte-
gration with other techniques and technologies.

Towards an Evaluation Framework for MAS Software Engineering 201

Table 5. Supportive related criteria questionnaire

Open systems: Does the methodology and the modeling language provide support for open sys-
tems with heterogeneous agents?
Security: Does the methodology and the modeling language provide support for security tech-
niques in agent applications?
Scalability: What size of MAS is the methodology suited for?
O Small O Medium O Large O All
Support for mobile agents: Do the methodology and the modeling language support the use of
mobile agents in MAS?
Support for ontology: Do the methodology and the modeling language support the
use/integration of ontology in MAS?
Support for MAS organizations: Do the methodology and the modeling language support the
use of organizational MAS?
Support for the integration with web services: Do the methodology and the modeling lan-
guage support the integration with web services?

2.2 Development Tools

This section analyzes how the specifications of the methodology are supported by
the modeling tool and which implementation facilities offer the implementation
tool. Finally, the gap between the methods and the models and the gap between
the models and the final implementation are reviewed. As shown in Figure 1,
the analysis of the development tool is divided in five categories: (1) Modeling
tool; (2) Gap between methods and the modeling tool; (3) Implementing tool;
(4) The gap between modeling and implementation; and (5) Technical issues.

Modeling tool: The modeling tool should allow the transformation of the ab-
stract concepts and ideas of the methodology into diagrams and models using a
specific modeling language (Table 6).

Table 6. Modeling tool questionnaire

Kind of representation supported: Which kind of representation is used?
O Graphics O Formal languages O Mixed
Automated generation of parts of the models: Does the modeling tool automatically generate
parts of the models?
Automated generation of models from requirements: Does the modeling tool able to read a
definition of the requirements and generate part of the models?
Store model language: Does the modeling tool store the models in a standard language?
Support for model checking: Does the modeling tool include support and tools to apply model
checking?
Support for ontology: How the modeling tool supports the definition of the ontology?
O Do not support O Allow implementing it O Allow importing it from other programs Which are:

Static verification tools: Does the tool provide an static verification?
- Detect inconsistences: Does the modeling tool detect inconsistences within and between models?
- Detect incompleteness: Does the modeling tool detect incompleteness within and between mod-
els?
- Propose solutions: Does the modeling tool proposes solutions when detects an error within or
between models?
- Others: Does the modeling tool offer other static verification tools?
Dynamic verification tools: Does the tool test the behaviour of the applications using simula-
tions, i.e. simplified system prototypes?

Gap between methods and the modeling tool: This category analyzes how
the modeling tool covers the specific features of a methodology (Table 7), the

202 E. Garcia, A. Giret, and V. Botti

gap between what is defined by the methodology and what can be modeled using
the modeling tool should be as little as possible.

Table 7. Gap between methods and the modeling tool questionnaire

Support for the modeling language: Does the modeling tool support all the features and
concepts that define the modeling language?
Support for the kind of representation: Does the modeling tool support all the types of
representation used by the modeling language?
Lifecycle coverage: Does the modeling tool support all the development stages supported by the
methodology?
Development guidelines: Does the modeling tool integrate the methodology development guide-
lines?
- Consistency guidelines: Are the guidelines and techniques for consistency checking both within
and between models integrated in the modeling tool?
- Consistency between levels of abstractions: Are the guidelines to ensure consistency between
levels of abstractions within each model and between different models integrated in the modeling
tool?
- Estimating guidelines: Are the guidelines to estimate the number of agents required, the imple-
mentation time or other useful features integrated in the modeling tool?
- Support for decisions: Are the guidelines about when to move between phases integrated in the
modeling tool?
- Model derivation: Are the guidelines to transform models into other models, or partially create
a model from information present in another, integrated in the modeling tool?
- Support for verification and validation: Are the rules that allow the verification and validation
of correctness of developed models and specifications integrated in the modeling tool?

Implementing tool and programming language: This category analyzes
which support offers the implementing tool to develop MAS, and also, it analyzes
traditional software engineering features of this kind of tools (Table 8).

Table 8. Implementing tool questionnaire

Platform dependent: Does the tool allow implementing code for any MAS-execution platform?
O Yes O No, only for:
Debugging facilities Does the tool offer debugging facilities?
Generation of graphical interfaces: Does the tool offer the possibility to generate graphical
interfaces?
Limited systems: Does the tool support the development of system with some limitations, i.e.,
the development of system that are going to be executed in limited devices like mobile phones?
Real time control: Does the tool offer facilities to use real time control techniques?
Security issues: Does the tool offer facilities to include security issues in the code of the MAS?
Physical environment models: Does the tool offer a library of simulators of physical parts of
some kinds of systems for testing the functionality and correctness of the developed system?
Utility agents: There are different agents offering services that do not depend on the particular
application domain. Does the implementing tool offer the code of some utility agents?
Reengineering: Does the tool offer the possibility to use reengineering techniques?

The gap between modeling and implementation: As is explained in [8,11],
it is very important to analyze the gap between what is modeled and what can
be finally implemented (Table 9). Most times, the implementation is developed
completely manually from the design. This creates the possibility for the design
and implementation to diverge, which tends to make the design less useful for
further work in maintenance and comprehension of the system [6].

Towards an Evaluation Framework for MAS Software Engineering 203

Table 9. Gap between modeling and implementation questionnaire

Match MAS abstractions with implementation elements: Have all the concepts modeled a
direct translation into an implementation element?
Automatic code generation: Can the implementing tool read some models and generate parts
of the code automatically? Which automatic code generation technology is used?
Specific platform facilities: Does the implementing tool provide facilities for developing the
code for a specific platform?

Technical issues: The issues presented in Table 10 are traditional software en-
gineering features that are related with the requirements of a tool to be installed,
executed and used.

Table 10. Technical issues questionnaire

Programming language: With which programming languages has been implemented the tool?
Installation requirements:
- In which platforms can be executed?
- Over which operating systems can be executed?
- Is it light-weight?
Required expertise Is it necessary be a expert modeler and developer to use the tool?
Facility to learn: Is the use of the tool easy to learn?
Facility to use: Is the tool easy to use?
Extensibility: Is easy to add new functionalities to the tool?
Scalability: Is the tool ready to develop any scale of applications (small systems or large-scale
applications)?
Collaborative development: Does the tool offer support for collaborative development?
Documentation: Are the use and features of the tool well documented?
Examples Is any complete example of the use of the tool available? MASDK.

2.3 Economical Aspects

These features has to be evaluated both for the methodologies and for the de-
velopment tools. The criteria presented in Table 11 do not only include the cost
of the application, also the vendor organization and the documentation offered
is analyzed.

Table 11. Economical aspects questionnaire

License: Under which license is available the evaluated method or tool?
Cost of the application: What is the cost a license of the application?
Cost of it documentation: What is the cost of it documentation?
Vendor organization: Which is the vendor organization responsible of the evaluated method or
tool?
O Industrial vendor: O Academical vendor:
Updates: Is the evaluated method or tool a static and definitive version or is an open project with
regular updates?
Technical service: Does the vendor organization provide technical service?
Examples of academical use: How many academical applications have been developed using the
evaluated method or tool?
O Any O One O 2-5 O 5-10 O More than 10
Examples of industrial use: How many industrial applications have been developed using the
evaluated method or tool?
O Any O One O 2-5 O 5-10 O More than 10

204 E. Garcia, A. Giret, and V. Botti

3 Conclusions

This paper presents a complete evaluation questionnaire for MAS software en-
gineering. The completeness and relevance of the presented evaluation criteria
are reflected via its attention to both system engineering dimensions and MAS
features, and because it analyzes the MAS development process from the re-
quirement stage to the implementation of the final code taking into account the
most important features and tools involved in the process. Furthermore, the gap
between methods and modeling issues, and the gap between the models and the
final implementation is studied. The evaluation criteria is presented as a ques-
tionnaire in order to facilitate the evaluation task and to make the evaluation
process more concrete and comparable.

With the results of the evaluations of such a framework a developer could select
the more appropriate MAS software engineering methods and tools for the par-
ticular system to develop. Furthermore, this questionnaire summarizes the most
important issues for developing MAS, so it could be used for MAS software engi-
neering developers to detect and improve lacks in their methods and tools.

Acknowledgements

This work is partially supported by the TIN2006-14630-C03-01,PAID-06-07/3191
projects and CONSOLIDER-INGENIO 2010 under grant CSD2007-00022.

References

1. Bitting, E., Carter, J., Ghorbani, A.A.: Multiagent System Development Kits: An
Evaluation. In: Proc. CNSR 2003, May 15-16, pp. 80–92 (2003)

2. Dam, K.H.: Evaluating and Comparing Agent-Oriented Software Engineering
Methodologies. Master’s thesis, RMIT University, Australia (2003)

3. Garcia, E., Giret, A., Botti, V.: Evaluating mas engineering tools. In: International
Conference on Evaluation of Novel Approaches to Software Engineering, pp. 181–
1874 (2008)

4. Garcia, E., Giret, A., Botti, V.: On the evaluation of mas development tools. In:
International Conference on Artificial Intelligence in Theory and Practice (IFIP
AI 2008). Springer, Boston (in press, 2008)

5. Lin, C., Kavi, K.M., Sheldon, F.T., Daley, K.M., Abercrombie, R.K.: A method-
ology to evaluate agent oriented software engineering techniques. In: HICSS 2007,
p. 60. IEEE Computer Society, Los Alamitos (2007)

6. Rafael, M.D., Bordini, H., Winikoff, M.: Current issues in multi-agent systems
development. In: Post-proceedings of the Seventh Annual International Workshop
on Engineering Societies in the Agents World, pp. 38–61 (2007)

7. Sturm, A., Shehory, O.: A framework for evaluating agent-oriented methodolo-
gies. In: Giorgini, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2003. LNCS,
vol. 3030, pp. 94–109. Springer, Heidelberg (2004)

8. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W.: Evaluation of agent-
oriented software methodologies examination of the gap between modeling and
platform. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS,
vol. 3382, pp. 126–141. Springer, Heidelberg (2005)

Towards an Evaluation Framework for MAS Software Engineering 205

9. Tran, Q., Low, G.: Comparison of ten agent-oriented methodologies. In: Henderson-
Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp. 341–367. Idea
Group Publishing (2005)

10. Wooldridge, M., Ciancarini, P.: Agent-Oriented Software Engineering: The State of
the Art. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957,
pp. 1–28. Springer, Heidelberg (2001)

11. Xue, X., Zeng, J., Liding, L.: Towards an engineering change in agent oriented
software engineering. In: ICICIC 2006: Proceedings of the First International Con-
ference on Innovative Computing, Information and Control, pp. 225–228. IEEE
Computer Society, Los Alamitos (2006)

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 206–213, 2008.
© Springer-Verlag Berlin Heidelberg 2008

From Obligations to Organizational Structures in
Multi-Agent Systems

J. Octavio Gutiérrez-García1,2, Jean-Luc Koning1, and Félix F. Ramos-Corchado2

1 Grenoble Institute of Technology, LCIS Research Laboratory,
50, rue Barthélémy de Laffemas, BP 54, 26902 Valence Cedex 9, France

2 Centro de Investigación y de Estudios Avanzados del IPN, Unidad Guadalajara,
Av. Científica 1145, Col. El Bajío, Zapopan 45010, Jalisco, México

jgutierr@gdl.cinvestav.mx, jean-luc.koning@grenoble-inp.fr,
framos@gdl.cinvestav.mx

Abstract. The achievement of common objectives in multi-agent systems is
only possible through interaction and coordination; in order to implement both
aspects in a effective manner, rules to direct the behavior of a group of agents
are necessary, however, existing rules are usually static, inflexible, and inap-
propriate for large systems, where dynamic interaction takes place. We propose
modeling agent behavior by means of obligations, utilized as social norms, de-
lineating agents’ roles as independent components, which can be grouped into
organizational structures. Moreover, such organizations can be deployed on a
service oriented platform, where the composition of organizations leads to the
creation of new services.

Keywords: Multi-agent systems, interaction protocols, and social norms.

1 Introduction

Agent interaction is generally governed by a set of rules, which are called interaction
protocols (IPs). The role played by IPs is vital to lead agent coordination coherently.
However, the rigid structure provided by current modeling techniques (e.g. finite state
automata) restrain the autonomy of the agents, limiting their proactivity. Therefore
more flexible and dynamic rules are required.

In recent times, a different trend to define rules, based on social norms, has
emerged. In [4] and [8] norms are expressed as social commitments, which represent
a promise of an agent to reach certain state of affairs to another agent. In [1] norms
are defined as permissions and obligations. In [2] and [6] norms are grouped in con-
tracts. Contracts are enhanced with agent societies, which are composed of social
organizations [3]. An organization is an association of agents, with an objective, that
is regulated by control mechanisms.

In here, we propose an interaction framework, inspired by social mechanisms of
control. As main element of control, we use social obligations. Obligations are used to
constrain and direct the functions of roles. Afterwards, interrelated roles are grouped
into organizations, which are deployed on a service oriented platform, where the
composition of non-existing services can take place.

 From Obligations to Organizational Structures in Multi-Agent Systems 207

This paper is structured as follows: In section 2, obligations are formalized;
section 3 presents the definition of roles; section 4 explains the organizational struc-
ture; section 5 illustrates the use of our modeling technique; section 6 describes how
organizations are composed; in section 7, a comparison with similar approaches is
presented; finally in section 8, we give some concluding remarks and the future work.

2 Definition and Management of Obligations

We define obligations as moral impositions to oneself to reach a state of affairs, de-
manded by a social force. An agent adopts obligations with the aim of exchanging
them for rights. The symbolic representation of an obligation is given by O(agt, f),
which means that an agent agt is obliged to reach the state of affairs f. Obligations can
express prohibitions as obligations to not reach a state of affairs, represented by
O(agt, ¬f). The states of an obligation are: allocated and released.

A special kind of obligation is the conditional obligation (CO), meaning that an
agent will be obliged to reach a state of affairs, whenever certain condition holds, this
is represented by CO(agt, f, g), where g represents the necessary condition. A CO is
only active if the state of affairs g is held while the obligation is allocated. Hence the
states of a CO are: allocated-active, allocated-inactive, and released.

To formalize obligations and their management, we have selected the Event Calcu-
lus (EC) formalism, for its simple and intuitive definition of actions.

2.1 The Event Calculus Formalism

The EC is a temporal formalism that provides a structure to reason about events and
the time when these occur [7]. An EC predicate can contain three kinds of elements:
an action a(), a fluent f that represents a property that is affected by the action at cer-
tain point of time t. We use the simple EC presented in [9]. The EC predicates utilized
are:

• Initiates(a(), f, t) means that the fluent f holds after the execution of a() at time t.
• Terminates(a(), f, t) denotes that the fluent f does not hold after the execution of the

action a() at time t.
• HoldsAt(f, t) means that the fluent f holds at time t.
• Happens(a(), t) means that the action a() is executed at time t.
• InitiallyP(f) and InitiallyN(f) means that f holds or does not hold, from t=0.

2.2 Operations over Obligations

Next, we will proceed with the formalization of the operations that can be applied
over obligations and/or conditional obligations, indistinctively. The sentence structure
is based on the work presented in [10], while semantics were overlapped by the one
provided by obligations.

Creating obligations. The creation of an obligation to reach a state of affairs f, by
performing an action a(), is shown next:

208 J.O. Gutiérrez-García, J.-L. Koning, and F.F. Ramos-Corchado

CreateO(a(agt), O(agt,f), t): {Happens(a(agt), t) ^ Initiates(a(agt), O(agt,f), t)} . (1)

Where the predicate a(agt) denotes that the action a() is performed by the agent
agt; the fluent O(agt, f) represents that the agent agt is obliged to reach the state of
affairs f, and t represents the instant when the action is performed.

An obligation can also be induced to another agent by means of a social force. This
is defined as follows:

CreateO(a(agt1), O(agt2,f), t): {Happens(a(agt1), t) ^Initiates(a(agt1), O(agt2,f), t)
^ HoldsAt(AllowedBy(agt2, O(agt2,f)), t)} .

(2)

If the predicate AllowedBy(agt2, O(agt2,f)) is evaluated true, implies that the agent
agt2 accepts the obligation O(agt2,f) induced by agt1.

Releasing obligations. The releasing of an obligation takes place when the state of
affairs f has been reached by the agent agt. This is stated as follows:

ReleaseO(a(agt), O(agt,f), t):
{Happens(a(agt), t) ^ Initiates(a(agt), f, t) ^ Terminates(a(agt), O(agt,f), t)} .

(3)

Obligations can also be released by another agent, in such a case:

ReleaseO(a(agt1), O(agt2,f), t):
{Happens(a(agt1), t) ^ Initiates(a(agt1), f, t) ^ Terminates(a(agt1), O(agt2,f), t)} .

(4)

Canceling obligations. When an obligation is canceled, new obligations can emerge
to compensate the cancelation; moreover, canceling an obligation can produce a cas-
cade of cancelations. This is represented in the next definition:

CancelO(a(agt), O(agt,f), Fc, Fd, t):
{Happens(a(agt), t) ^ Terminates(a(agt), O(agt,f), t) ^

Initiates(a(agt), O(agt, c), t) | c∈ Fc ^ Terminates(a(agt), O(agt, d), t) | d ∈ Fd } .

(5)

Where Fc and Fd denote the set of additional obligations to compensate and to can-
cel, respectively. Both Fc and Fd can be empty sets.

To ensure an appropriate management of the creation, releasing and cancelation of
obligations, the following rules are required:

1. CreateO(a(agt), O(agt,f), t)←¬HoldsAt(O(agt,f),t) ^ Happens(a(agt), t)
2. ReleaseO(a(agt), O(agt,f), t)←HoldsAt(O(agt,f),t) ^ Happens(a(agt), t)
3. CancelO(a(agt), O(agt,f), Fc, Fd, t)←HoldsAt(O(agt,f),t) ^ Happens(a(agt), t) .

(6)

The first rule indicates that an obligation can be created only if it is not already
held; the second and third rules, state that an obligation can be released or canceled,
respectively, only if the obligation is held.

3 Role Definition

With obligations, we are able to model the roles that each agent can play inside an
organization. A role has 7 elements: Interaction context, domain knowledge, initial
obligations, actions, effects of cancelling obligations, interaction state and a priority
relation. Next, a detailed definition of each element:

 From Obligations to Organizational Structures in Multi-Agent Systems 209

a) Interaction context (W). It contains the obligations that agents can commit to,
and those ones that can induce to other roles. An obligation can have 4 properties:
− Self-induced (¤). The obligation can be acquired by agent's own decision.
− Out-in induction (↓). The obligation can be externally induced by another agent.
− In-out induction (↑). The agent has the power to induce the obligation to others.
− Final (*). The obligation can be released by the agent, without intermediaries.

The interaction context can be used as an interface to couple with other roles.
b) Domain knowledge (K). Obligations require of domain knowledge variables, to

specify the properties and/or level of the obligations that an agent is committed to.
c) Initial obligations (I). When an agent instantiates a role, a set of initial obliga-

tions is assigned to it, by the simple fact of playing the role.
d) Actions (A). An action definition has three elements: preconditions, the action

itself, and its effects. Next, a detailed definition of each element is presented:
− Preconditions: The preconditions are defined in terms of obligations, and are rep-

resented by a set of conjunctions and disjunctions of elements of four different
classes, for a certain state of affairs f.

1. When a state of affairs has to be already accomplished: HoldsAt(f, t1).
2. When is enough that someone is committed to reach f: HoldsAt(O(agt,f), t1).
3. When an agent can decide between accepting the accomplishment of a state

of affairs or considering enough that another agent is obliged to reach it:
(HoldsAt(f, t1) ⊕ HoldsAt(O(agt,f), t1)).

4. When the action has to be executed in a predefined period of time, this is ex-
pressed in the following way (t1 [< | > | =] t2).

− Actions. Several messages or actions sent/performed by an agent can be grouped
for the same set of preconditions, but each action should have its own effects.

− Effects. Releasing and creation of obligations.
e) Effects of canceling obligations (C). For each possible obligation that can be

created during the interaction, effects for its cancelation have to be defined:

C = {CancelO(a(agt), O(agt,f), Fc, Fd, t)| ∀O(agt,f) that can be instantiated} . (7)

f) Interaction state (S). The current interaction state of an agent is determined by
the obligations that have to accomplish at certain moment. This is denoted as follows:

S = {HoldsAt(O(agt,f), t) | ∀f that the agent agt is obliged to reach} . (8)

g) Priority relation (P). Since not all obligations are equally important, a prefer-
ence relation should be provided; such relation has two operators:
− O1 >> O2 denotes that the releasing of O1 is preferred over the releasing of O2
− O1 || O2 denotes that there is not preference between complying with O1 or O2.

4 Organizations

Interrelated roles are grouped into organizations with the aim of providing a service,
adding a new level of encapsulation to the interaction. We define an organization Org
as a 6-tuple (W, K, G, P, R, S), where W denotes Interaction Context, K Domain
knowledge, G Group of agents, P Proprietor of the organization, R Set of roles, and S
State of the organization. A detailed definition of each element is presented next:

210 J.O. Gutiérrez-García, J.-L. Koning, and F.F. Ramos-Corchado

a) Interaction context (W). The interaction context is defined by the union of the
interaction contexts of all the roles that belong to the organization, providing a de-
scription of its function, as well as an interface to couple with other organizations.

b) Domain knowledge (K). The domain knowledge of the organization is defined
by the union of the domain knowledge of each role that belongs to it.

c) Group of agents (G). An agent agt is a member of an organization in a deter-
mined time t, if it complies with the next: ∃f Holds(O(agt,f), t).

d) Proprietor of the organization (P). The proprietor of an organization is the main
sustention of the organization; it should provide the role’s definitions to new mem-
bers, publish the interaction context, and keep track of the interaction state.

e) Set of roles (R). An organization contains a set of roles, which provides an ab-
straction of all the functionalities of the organization.

f) State of the organization (S). The current state of an organization is determined
by the obligations that each member of the organization has:

State = {∀agt, ∀f, HoldsAt(O(agt,f), t), for a given time t} . (9)

BUYER (B)

WB={Pay(x)¤*, SendInfo(x) , SendDetails(x) , Deliver(x) ,
SendReceipt(x) , PayRetractionFee(x)¤*, ReturnProduct(x)¤}

KB ={list-products, details, mod, qty, price, deadlineP}

IB ={ }

PB,1:{ }
AB,1: Request(list-products)
EB,1:{CreateO(Request(list-products), O(S, SendInfo(x)), t)}

PB,2:{ }
AB,2: Request(details, mod)
EB,2:{CreateO(Request(details, mod), O(S, SendDetails(x)), t)}

PB,3:{ }
AB,3: Accept(qty, mod, price, deadlineP)
EB,3:{CreateO(Accept(qty, mod, price, deadlineP), O(B, Pay(x)), t),
 CreateO(Accept(qty, mod, price, deadlineP), O(S, Deliver(x)), t)}

PB,4:{HoldsAt(O(B, Pay(x)), t) ^
 (HoldsAt(O(S, Deliver(x)), t) HoldsAt(Deliver(x), t)) ^
 (t < deadlineP)}
AB,4: MakePayment(price)
EB,4:{ReleaseO(MakePayment(price), Pay(x), t),
 CreateO(MakePayment(price), O(S, SendReceipt(x)), t)}

PB,5:{HoldsAt(O(B, PayRetractionFee(x)), t) }
AB,5: MakePayment(price/10)
EB,5:{ReleaseO(MakePayment(price/10), PayRetractionFee(x), t)}

CB={CancelO(Withdraw(qty, mod, price, deadlineP), O(B, Pay(x)),
 {O(B, PayRetractionFee(x)),
 CO(B, ReturnProduct(x), Deliver(x))},
 {O(S, Deliver(x))}, t)}

Priority RelationB = Pay(x) >> ReturnProduct(x) >>
 PayRetractionFee(x)

NOTE: P, A, and E Stand for preconditions, actions, and
 effects, respectively.

SELLER (S)

WS= {SendInfo(x) *, SendDetails(x) *, Deliver(x) *,
SendReceipt(x) *, Advertise¤*, OfferItems(x)¤*, RefundMoney(x)¤*}

KS={list-products, details, mod, qty, price, deadlineD, orderID}

IS={Advertise}

PS,1:{HoldsAt(O(S, SendInfo(x)), t)}
AS,1: Reply(list-products)
ES,1:{ReleaseO(Reply(list-products), O(S, SendInfo(x)), t)}

PS,2:{HoldsAt(O(S, SendDetails(x)), t)}
AS,2: Reply(details, mod)
ES,2:{ReleaseO(Reply(details, mod), O(S, SendDetails(x)), t)}

PS,3:{HoldsAt(O(S, Deliver(x)), t) ^
 (HoldsAt(O(B, Pay(x)), t) HoldsAt(Pay(x), t)) ^ (t <deadlineD)}
AS,3: DispatchItems(qty, mod, price)
ES,3:{ReleaseO(DispatchItems(qty, mod, price), O(S, Deliver(x)), t)}

PS,4:{HoldsAt(O(S, SendReceipt(x)),t)}
AS,4: EmitReceipt(orderID)
ES,4:{ReleaseO(EmitReceipt(orderID), O(S, SendReceipt(x)), t)}

PS,5:{HoldsAt(O(B, Advertise), t)}
AS,5: Advertising()
ES,5:{ReleaseO(Advertising(), O(B, Advertise), t)}

PS,6:{HoldsAt(O(B, OfferItems(x)), t)}
AS,6: SuggestProducts(list-products)
ES,6:{ReleaseO(SuggestProducts(list-products),O(B, OfferItems(x)), t)}

PS,7:{HoldsAt(O(S, RefundMoney(x)), t)}
AS,7: MakePayment(Price*Qty)
ES,7:{ReleaseO(MakePayment(Price*Qty), O(B, RefundMoney(x)), t)}

CS={CancelO(DeclareOutStock(mod) , O(S, Deliver(x)),
 {O(S, OfferItems(x)), CO(S, RefundMoney(x), Pay(x))}
 {O(B, Pay(x))}, t)}

Priority RelationS = RefundMoney(x) >> Deliver(x) >> OfferItems(x)
>> SendReceipt(x) >> SendInfo(x) || SendDetails(x) >> Advertise

ORGANIZATION STRUCTURE
WMARKET = WB U WS ={Pay(x)¤*, SendInfo(x) *, SendDetails(x) *, Deliver(x) *, SendReceipt(x) *, PayRetractionFee(x)¤*,

 ReturnProduct(x)¤, Advertise¤*,OfferItems(x)¤*, RefundMoney(x)¤*}

KMARKET =KB U KS ={list-products, details, mod, qty, price, deadlineP, deadlineD, orderID} Roles ={Seller and Buyer} Proprietor = Seller

Fig. 1. Specification of the market organization

 From Obligations to Organizational Structures in Multi-Agent Systems 211

5 Market Organization Example

A market organization is modeled to illustrate our modeling technique. The market
organization has two roles: buyer and seller. In this organization, the buyer requests
information about certain kind of products, in turn, the seller answers with a list of
products; afterwards the buyer asks for a detailed description of a particular model, in
which he is interested; after receiving the information, the buyer can decide between
buying the product or keep looking for better prices. If the buyer decides to buy the
product, he pays for it, and then, the seller delivers the product and sends a receipt.
The specification of the market organization is presented in figure 1.

6 Composition of Organizations

Organizations as encapsulated components that provide specific services require ap-
propriate mechanisms in order to be composed to create enhanced services, which
will satisfy unpredicted requirements.

In dynamic environments is difficult and expensive to predict every situation,
moreover, sometimes is inappropriate to specify every aspect of the interaction, since
this could lead to a complex definition of the interaction. To overcome this, we define
generic actions that can be dynamically instantiated, whenever an obligation can not
be released inside an organization. A generic action is defined as follows:

 P: {HoldsAt(O(Org1.Role, Org1.Role:O1), t)}
 A: UnifyOs(Org1.Role:O1, Org2.Role:O2); Org2.Role.Action();
 E:{ReleaseO(Org2.Role.Action(), Org1.Role:O1, t)} .

(10)

Where Org1 represents the organization where is not possible to release O1; Org2
represents a variable that will point to another organization where O1 can be released;
the predicate UnifyOs(Org1.Role:O1, Org2.Role:O2) expresses the creation of the
linkage, between O1 and O2. Now with both obligations unified, whenever O2 is re-
leased inside Org2 by the execution of Org2.Role.Action(), the obligation O1 will also
be released inside Org1.

In order to locate other organizations, their structures should be deployed on a ser-
vice oriented platform. Every organization publishes its interaction context in the
yellow pages, where agents can search and discover new organizations. We assume
that all the agents share the same ontology.

Three steps are required to compose organizations:

1. An agent has to compare the obligation that it wants to release with the interaction
contexts published in the yellow pages.

2. Then, with the organization located, an analysis of the role definitions is necessary
to decide the role to instantiate. This is performed by looking at the individual in-
teraction context of each role, to see which of them contain an In-Out induction ob-
ligation, which matches the Out-In obligation found in step two.

3. The final step requires the identification of the action that releases the obligation in
the host organization; this can be done by looking at the effects of the actions.

212 J.O. Gutiérrez-García, J.-L. Koning, and F.F. Ramos-Corchado

With the generic action instantiated, the linkage (composition) of both organiza-
tions is established, and their functioning isolated from each other.

7 Discussion

An important trend to guide agent interaction by social norms, is the commitment
approach. In the work presented in [8] and [10], IPs are specified as commitment
machines formalized with EC; an extension of the commitment machines is presented
in [5], wherein an algebra for manipulating commitment protocols is proposed. Al-
though the use of commitments provides high flexibility, its general application is still
limited, since it is difficult to define a debtor and a creditor for a simple exchange of
messages; besides norms like prohibitions and permissions can not be expressed by
means of commitments. Therefore, we consider that obligations are more appropriate
to express engagement, without requiring a creditor.

With respect to the organizational approach, a work that is close to ours is pre-
sented in [1], here executable specifications of organizations are presented. The main
difference to our work is the introduction of an institutional power concept; it is said
that an agent has the institutional power to perform certain action if it is empowered
to do it. Another close work to ours is presented in [3], wherein is proposed a coordi-
nation framework based on organizations and commitments; they define hierarchical
structures, where high-grade agents can assign or delegate tasks to low-grade agents.
In both works [1] and [3], hierarchical structures are established; in this matter, we
consider that an organization should be composed of agents with the same level
of power, without a central control of coordination, as happens in hierarchical
structures; our vision of organizations based on obligations distributes the control of
the interaction.

8 Conclusions and Future Work

In this work, we defined obligations as engagements to oneself, demanded by a social
force; we introduced their management, using the EC formalism; afterwards an or-
ganization structure was defined, which provides an interaction framework instituted
by obligations; subsequently a method to compose organizations by means of unify-
ing obligations was presented, enhancing the interaction framework.

The obligations are used as the main element of the interaction framework; their
power of expression allows controlling the agent behavior, but respecting at the same
time its autonomy. In addition, by modeling IPs by means of obligations, agents’
proactivity is encouraged, enabling them to react to new and unforeseen situations.

Organizations, as presented here, are seen as components that can be composed to
provide enhanced services; the loosely coupling of organizations makes possible
flexible and dynamic interaction, where no previous configuration is required among
the parties; as a result, organizations operate as service oriented components that
modularize agent interaction, offering scalable properties to MAS.

Our future work will be addressed to develop mechanisms to verify formal proper-
ties of the IPs, and mechanisms to check the consistency of the obligations.

 From Obligations to Organizational Structures in Multi-Agent Systems 213

References

1. Artikis, A., Sergot, M., Pitt, J.: Specifying Norm-Governed Computational Societies.
ACM Transactions on Computational Logic (2007)

2. Boella, G., Van der Torre, L.W.N.: A game theoretic approach to contracts in multiagent
systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C 36(1), 68–79
(2006)

3. Carabelea, C., Boissier, O.: Coordinating Agents in Organizations Using Social Commit-
ments. Electronic Notes in Theoretical Computer Science 150(3), 73–91 (2006)

4. Castelfranchi, C.: Commitment: from intentions to groups and organizations. In: Proceed-
ings of ICMAS 1995, pp. 41–48. AAAI-MIT Press, Cambridge (2005)

5. Chopra, A.K., Singh, M.P.: Contextualizing commitment protocol. In: AAMAS 2006, pp.
1345–1352. ACM Press, New York (2006)

6. Dignum, V., Meyer, J.-J., Weigand, H., Dignum, F.: An organization-oriented model for
agent societies. In: Proceedings of International Workshop on Regulated Agent-Based So-
cial Systems: Theories and Applications at AAMAS 2002 (2002)

7. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Comput-
ing 4(1), 67–95 (1986)

8. Mallya, A.U., Singh, M.P.: An algebra for commitment protocols. Autonomous Agents
and Multi-Agent Systems 14(2), 143–163 (2007)

9. Shanahan, M.P.: The event calculus explained. In: Veloso, M.M., Wooldridge, M.J. (eds.)
Artificial Intelligence Today. LNCS, vol. 1600, pp. 409–430. Springer, Heidelberg (1999)

10. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying event cal-
culus planning using commitments. In: AAMAS 2002, pp. 527–534. ACM Press, New
York (2002)

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 214–221, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Addressing the Brittleness of Agent Interaction

Mohd Fadzil Hassan1 and Dave Robertson2

1 Computer and Information Sciences Department,
Universiti Teknologi PETRONAS, Bandar Seri Iskandar

31750 Tronoh, Perak, Malaysia
mfadzil_hassan@petronas.com.my

2 Center for Intelligent Systems and their Applications (CISA),
School of Informatics, University of Edinburgh, Scotland, UK

dr@inf.ed.ac.uk

Abstract. The field of multi-agent systems shifts attention from one particular
agent to a society of agents; hence the interactions between agents in the society
become critical towards the achievement of their goals. We assume that the in-
teractions are managed via a protocol which enables agents to coordinate their
actions in order to handle the dependencies that exist between their activities.
However, the agents’ failures to comply with the constraints imposed by the
protocol may cause the agents to have brittle interactions. To address this prob-
lem, a constraint relaxation approach derived from the Distributed Partial
Constraint Satisfaction Problem (CSP) is proposed. This paper describes the
computational aspects of the approach (i.e. specification of a distance metric,
searching for a solvable problem and specification of a global distance function).

Keywords: Brittle agent interaction, constraint relaxation for agent interaction,
Distributed Partial CSP for computation of agent interaction.

1 Introduction

Depending on the kind of sub-problem interdependencies, the interaction among
agents in a multi-agent system (MAS) for a distributed problem solving task can be
complex, often requiring a multi-step dialogue. This interaction can be achieved
through a protocol that specifies not only the communication of agents, but also the
creation and destruction of agents (i.e. agents entering/leaving a MAS), the spatial
distribution of agents, as well as synchronization and distribution of actions over time
[1]. It generally involves two important elements – the subjects whose activities need
to be coordinated (i.e. agents) and the entities between which dependencies arise (i.e.
objects of coordination), namely sub-problems handled by the individual agents [2].

The specification of the involved elements and the relationship that exist between
them are generally mediated and represented by the notion of role. When assuming a
role, an agent is in charge of the corresponding task or action, and is entitled to all the
authorizations and permissions (and limitations as well) pertaining to its role. The
state of the agent interactions is then reflected on the ways the constraints imposed on
them are mutually and individually satisfied by the interacting agents.

 Addressing the Brittleness of Agent Interaction 215

However, we should realize that when agents interact to solve a particular Multi-
agent Agreement Problem (MAP) [3], it is rarely the case that their individual con-
straints are completely acceptable or completely inconsistent to each other. Rather, it
is normally the case that their respective constraints are partially satisfied. Therefore,
given that the agents are capable to revise or relax their locally imposed constraints
upon encountering an over-constrained situation while participating in the distributed
constraint solving process of the MAP, a mechanism is required to accommodate the
agents’ computational and interactive needs for addressing the problem. In this paper,
the focus is on the former.

The remainder of this paper is organized as follows: In section 2 we provide a dis-
cussion on the distributed partial CSP and a detailed description of how we use the
distributed partial CSP scheme to implement our constraint relaxation approach is
given in chapter 3. This paper concludes in section 4.

2 Distributed Partial Constraint Satisfaction Problem

As described in [4], the use of constraint satisfaction techniques in multi-agent systems
(MAS) is not new as they have been utilized either as a part of the agents’ problem
solving apparatus or coordination formalisms as reported in [5, 6]. However, these re-
ported works did not address over-constrained problems. Our approach, on the other
hand, considers of integrating distributed partial CSP as part of the constraint handling
feature of the MAS interaction protocol system. This is a novel way of providing a
more flexible approach for handling constraints during the interactions of heterogene-
ous and autonomous agents participating in a distributed problem solving task.

A CSP consists of a finite number of variables, each having a finite and discrete set
of possible values, and a set of constraints over these variables. A solution to a CSP is
an instantiation of all variables for which all the constraints are satisfied. In practice
however, it is sometimes the case that certain constraints can be violated occasionally,
or weakened to some degree. As conventional CSP techniques lack the mechanisms to
accommodate such a notion of constraint handling, this gives rise to the establishment
of a niche research area within the constraint satisfaction research field focusing on
approaches to solve over-constrained problems, which include distributed partial CSP.

A distributed partial CSP, as abstractly described in [7], consists of:

 A set of agents (problem solvers), 1, 2,…, m

 〈(Pi, Ui), (PSi, ≤), Mi〉 for each agent i

 (G, (Necs, Suff)), where

For each agent i, Pi is an original CSP (a part of an original distributed CSP),
and Ui is a set of universes, i.e. a set of potential values for each variable in Pi. Fur-
thermore, (PSi, ≤) is called a problem space, where PSi is a set of (relaxed) CSPs in-
cluding Pi, and ≤ is a partial order over PSi. Also, Mi is a locally-defined distance
function over the problem space. G is a global distance function over distributed prob-
lem spaces, and (Necs, Suff) are necessary and sufficient bounds on the global distance
between an original distributed CSP (a set of Pis of all agents) and some solvable dis-
tributed CSP (a set of solvable CSPs of all agents, each of which comes from PSi).

216 M.F. Hassan and D. Robertson

A solution to a distributed partial CSP is a solvable distributed CSP and its solu-
tion, where the global distance between an original distributed CSP and the solvable
distributed CSP is less than Necs. Any solution to a distributed partial CSP will suf-
fice if the global distance between an original distributed CSP and the solvable dis-
tributed CSP is not more than Suff, and all search can terminate when such a solution
is found.

3 Application of Distributed Partial CSP for Addressing
Brittleness Problem

In this section, we provide a detailed description of how we use the distributed partial
CSP scheme to implement our constraint relaxation approach. This includes a discus-
sion on the following computational aspects of our approach:

a. The distance metric used (i.e. solution subset distance to compute the degree
of constraint relaxation attempted by each individual agent).

b. Finding a solvable MAP among agents involved in the constraint relaxation
process.

c. The global distance function for agents to compute the best constraint relaxa-
tion path to be taken.

3.1 Specification of Distance Metric

This research specializes the solution subset distance metric of [8] for finding a solv-
able MAP with a minimal degree of constraint relaxation. This is obtained when the
agents participating in the constraint relaxation task generate individual problem
spaces containing a set of relaxed CSPs, so that the distance between P2, a relaxed
problem selected from the set, and the original, un-relaxed problem, P1, is within a
certain bound, according to the specified distance metric. As described in the abstract
distributed partial CSP model, the functions to provide distance computation are
specified at two separate levels – local and global.

At the local level, we are mainly concerned with the computation of additional so-
lutions introduced due to the individual relaxation attempted by the agents. This is ac-
complished by comparing P2 with P1 each time after a relaxation is performed. Given
P1, and its corresponding relaxed problem P2, the distance metric describes how far
the solutions for the two local problems are from each other. This is accomplished by
associating the solutions that are already in the original, un-relaxed problem with the
one introduced due to relaxation. For instance, the solution subset distance between
the two comparable problems P1 and P2 is the number of solutions of P2 which are not
solutions of P1. Given that the sets S and S’ respectively represent the solution sets of
the original problem, P1, and its corresponding relaxation, P2, that is, S=sols(P1) and
S’=sols(P2), where sols denotes the solutions to the problem. Then, computation of
distance between the two sets (i.e. S and S’) not only needs to consider the new addi-
tional solutions introduced, but also the existing solutions of the original problem that
might be eliminated due to the performed constraint relaxation. Therefore, the equa-
tions in figure 1 describe how this is computed, where L is the union of these two
components, and the distance, d, is then measured as the cardinality of L.

 Addressing the Brittleness of Agent Interaction 217

L = (S−S’) ∪ (S’−S) (1)

d = | L | (2)

Fig. 1. Equations for distance computation

At the global level, we are concerned with the computation of distance of distrib-
uted problem spaces. This involves two important steps – first, finding a set of relaxed
CSPs allowing for a solvable MAP state to be achieved and second, computing the
global distance of the set from their corresponding original problems. Part of the
first step also includes the specification of two special bounds to ensure the individual
problem space generated by each agent involved in the constraint relaxation
interaction is restrained. These two bounds are identified as necessary and sufficient
bounds.

The disruption on agent interactions due to an over-constrained situation will nor-
mally result in a partially solvable MAP to be obtained. This MAP contains a set of
fully solvable variables, assigned with solution values mutually agreed by all agents.
The assignments of these variables are obtained prior to the occurrence of an over-
constrained state. This is only possible if there exists a set of variables from the MAP
that can be satisfied locally by each agent involved in the problem solving interaction.
This set and its assigned solution values are used as the necessary bound. The neces-
sary bound specifies that distributed problem spaces under consideration must all
contain solutions that are within the bound. Assuming that all original problems indi-
vidually specified by the distinct agents at the pre-interaction stage have a set of solu-
tions which has become a fully solvable part of the MAP, then any relaxed problems
derived from the originals must contain this set of solutions. This is necessary for pre-
venting any relaxed problem from deviating from an already solvable part of the MAP
and effectively restricts the size of the problem space under consideration. This means
that any relaxed CSP obtained can only be considered if it satisfies this requirement.
In the worst case scenario, this set might be empty, indicating that the interacting
agents cannot reach a deal range on any of the variables of the MAP.

A partially solvable MAP also contains a set of non-solvable variables, due to the
existence of one or more agents that fail to satisfy their individual constraints con-
cerning these variables during the problem solving interactions. This set of non-
solvable variables is specified in the sufficient bound, which describes what needs to
be achieved during the constraint relaxation process. A successful value assignment to
the set indicates the attainment of a solvable MAP state. A set of relaxed CSPs, ob-
tained from the problem spaces generated by the interacting agents during a particular
constraint relaxation cycle, is sufficient if the additional solutions derived from these
CSPs allow the initial set of non-solvable variables of the MAP to become solvable.

Both bounds give the required direction to the process of identifying locally re-
laxed CSPs among the agents from which a consistent, solvable MAP with an accept-
able solution subset distance is derived.

218 M.F. Hassan and D. Robertson

3.2 Finding a Solvable MAP

In any MAP solving interaction through a specified protocol, there exist two possible
groups of agents. Though in the actual problem solving interaction it might involve

Fig. 2. The search for a solvable MAP state

 Addressing the Brittleness of Agent Interaction 219

more than two agents, all the agents can be identified as belonging to either one of
these two groups. The first group, J, consists of a set of agents that has completed its
part of the protocol in solving and constraining a particular set of variables of the
MAP. The second group, K, on the other hand, represents a set of agents whose part
in the protocol is incomplete as they cannot satisfy the inter-agent or global con-
straints imposed on the corresponding set of variables of the MAP. Therefore, the task
of finding a solvable MAP given an over-constrained distributed problem solving
state, involves a series of local searches on the weakened CSPs provided by these two
groups of agents. The weakened CSPs must satisfy the necessary bound, but may not
satisfy the sufficient bound. From the view of these two groups of agents who are in-
volved in this collaborative task, the local relaxation process can be thought of as a
search which starts from an initial node representing the original CSP of the agent,
and follows a path until a solvable MAP state is achieved. The whole searching proc-
ess is constrained by the specified necessary bound. The process stops when we found
a combination of weakened CSPs by the individual agents that satisfy the sufficient
bound with some acceptable distance between the derived solution sets. It is then said
that a solvable MAP state has been achieved, and there are three possible conditions
on how this is accomplished, which are described using agents j and k, instances for
agent groups J and K respectively, that is j∈J and k∈K:

1. Agent k performs the necessary constraint relaxation on its original
CSP, producing a problem space containing the necessary relaxed CSPs,
allowing a solvable state to be achieved without the other party, agent j,
performing any relaxation on its part as illustrated in figure 2 (a).

2. Agent j performs the necessary constraint relaxation on its original
CSP, producing a problem space containing the necessary relaxed CSPs,
allowing a solvable state to be achieved without the other party, agent k,
performing any relaxation on its part as illustrated in figure 2 (b).

3. Both agents j and k perform the necessary relaxation on their respective
original CSPs, where their combined relaxation produces a correspond-
ing set of relaxed CSPs that allow a solvable state to be achieved as il-
lustrated in figure 2 (c).

However, it might also be the case that there exists no improvement towards the
achievement of a solvable MAP state after a number of relaxation cycles have been
performed. Given this outcome, the relaxation process terminates as it simply indi-
cates that the agents cannot reach an agreement in reconciling their differences as il-
lustrated in figure 2 (d).

3.3 Global Distance Computation

A global distance function, G, is used to measure the global distance between an
original distributed CSP (i.e. a set of original CSPs of all agents) and some solvable
distributed CSP (i.e. a set of solvable CSPs of all agents, generated by the agents dur-
ing the constraint relaxation process) in reaching a solvable MAP state. The function
can be specified as the following equations:

220 M.F. Hassan and D. Robertson

∑ == n

1i
iTotal dG

)dmax(iMaxG =

The equation in expression 3 provides the computation for the summation of local
distances of all agents participating in the constraint relaxation task, where n is the
number of agents involved in the task; di is the local distance for each agent i as speci-
fied in expression 2 of figure 1, which is the number of additional solutions introduced
and existing solutions eliminated due to the relaxation individually performed by each
agent on its privately defined finite-domain constraints of the MAP. We search for a
combination of relaxed problems generated by the agents that minimize GTotal.

The equation in expression 4 provides the computation to find the maximum local
distance GMax, given a set of distances, di, for each agent i participating in the con-
straint relaxation task. We search for a combination of relaxed problems generated by
the agents with the lowest GMax.

In our work, a two-stage system is employed. In the first stage, we search for a
combination of relaxed problems among the agents that produces a minimal GTotal.
For a search resulting of more than one solution, the system proceeds to the second
stage. In the second stage, the GMax for each remaining solution is computed and a so-
lution with the lowest GMax is selected.

4 Conclusion

In this paper, a constraint relaxation approach derived from the distributed partial CSP
is proposed for addressing the brittleness of agent interaction in solving an over-
constrained MAP. The paper specifically described the computational aspects of the
approach (i.e. specification of a distance metric, searching for a solvable problem and
specification of a global distance function).

The approach described in the paper has been encoded as an agent interaction pro-
tocol using the Lightweight Coordination Calculus (LCC) [9]. In the LCC framework,
the protocol language and the expansion engine are written in SICStus Prolog [10]
and the message passing system is implemented in Linda [11]. Therefore, we choose
to implement our approach in SICStus Prolog to take advantage of the existing code
for the LCC basic framework and expansion engine, and ensure smooth interfacing
with these components. In addition, a finite-domain constraint solver available in
SICStus Prolog (i.e. clp(FD)) is used to accommodate the computations on the solu-
tion subset distance, necessary and sufficient bounds for the set of problems contained
in the agents’ problem spaces.

References

1. Bocchi, L., Ciancarini, P.: A perspective on multiagent coordination models. In: Huget,
M.-P. (ed.) Communication in Multiagent Systems. LNCS, vol. 2650, pp. 146–163.
Springer, Heidelberg (2003)

2. Omicini, A., Ossowski, S.: Objective versus subjective coordination in the engineering of
agent systems. In: Klusch, M., Bergamaschi, S., Edwards, P., Petta, P. (eds.) Intelligent In-
formation Agents. LNCS, vol. 2586, pp. 179–202. Springer, Heidelberg (2003)

(3)

(4)

 Addressing the Brittleness of Agent Interaction 221

3. Modi, P.J., Veloso, M.: Bumping strategies for the multiagent agreement problem. In: Pro-
ceedings of the Fourth International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS 2005), Utrecht, The Netherlands (2005)

4. Sycara, K.P.: Multiagent systems. AI Magazine 19, 79–92 (1998)
5. Macho-Gonzales, S., Torrens, M., Faltings, B.: A multi-agent recommender system for

planning meetings. In: Proceedings of the Workshop on Agent-based Recommender Sys-
tems (WARS 2000), Barcelona, Spain (2000)

6. Aldea, A., Lopez, B., Moreno, A., et al.: A multi-agent system for organ transplant coordi-
nation. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS, vol. 2101,
pp. 413–416. Springer, Heidelberg (2001)

7. Yokoo, M.: Distributed constraint satisfaction: foundations of cooperation in multi-agent
systems. Springer, Heidelberg (2001)

8. Bistarelli, S., Freuder, E.C., O’Sullivan, B.: Encoding partial constraint satisfaction in the
semiring-based framework for soft constraints. In: Proceedings of the 16th IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI 2004), Boca Raton, FL,
USA (2004)

9. Robertson, D.: Multi-agent coordination as distributed logic programming. In: Demoen,
B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 416–430. Springer, Heidelberg
(2004)

10. SICS, SICStus Prolog User’s Manual. Stockholm: Swedish Institute of Computer Science
(SICS) (1999), http://www.sics.se/sicstus.html

11. Carrieno, N., Gelernter, D.: Linda in context. Communications of the ACM 32, 444–458
(1989)

Dividing Agents on the Grid for Large Scale
Simulation

Dac Phuong Ho, The Duy Bui, and Nguyen Luong Do

College of Technology
Vietnam National University, Hanoi

{phuonghd,duybt}@vnu.edu.vn

Abstract. Multi-agent based simulation is an important methodology
that uses models incorporating agents to evaluate research conclusions.
When the simulation involves a large number of agent, however, it re-
quires extensively high computational power. In that case, all agents in
the simulation model should be distributed in a way so that agents can
be run in parallel on multiple computational nodes to gain the required
performance speed up. In this paper, we present a framework for large
scale multi-agent based simulation on grid. We have modified the desk-
top grid platform BOINC for multi-agent based simulation. Assuming
that the agents interact locally with the environment, we proposed an
approach to divide the agents for grid nodes so that we can keep load
balancing for the distributed simulation while optimizing the communi-
cation between grid nodes and the grid server. We have implemented the
food foraging simulation to evaluate the feasibility of the framework.

Keywords: Grid Computing, Multi-agent based simulation.

1 Introduction

The area of multi-agents have received much attention from the research com-
munity in the last decade. In a multi-agent system, agents are autonomous com-
puter programs that react to their simulated social and physical environment
with regard to their goals. Multi-agents have proven to be useful in many ap-
plication areas, such as electronic commerce, entertainments, human computer
interaction, etc. Besides, multi-agent based simulation is an important method-
ology that uses models incorporating agents to evaluate research conclusions.
When the part of the real world that we want to examine is not accessible, or
experimenting with the real system is prohibited due to undesired disturbances,
then simulation is a good option. Simulation is a tool for understanding and
formalization of a hypothesis that otherwise would have remains very vague.
For example, in social science, multi-agent based simulation is a productive and
innovative frontier for understanding complex social systems [5], because it al-
lows social scientist to model social phenomena directly in term of social entities
and their interaction, in ways that are inaccessible either through statistical or
mathematical modeling in close form [3, 4, 8].

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 222–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Dividing Agents on the Grid for Large Scale Simulation 223

Multi-agent based simulation normally refers to time driven event simulation
where real world entities are modelled in terms of agents and system behavior
emerges from interactions between these agents. When the simulation involves
a large number of agent, obviously, it requires extensively high computational
power. In that case,all agents of the simulation model should be distributed in
a way so that agents can be run in parallel on multiple computational nodes to
gain the required performance speed up. Although distributed multi-agent based
simulation offers new and interesting opportunities for experimenting with more
complex, more realistic, and even more valuable world models, new issues arise
with this simulation model. For example, the issues of synchronizing events to
ensure causality, monitoring of the distributed simulation state, load balancing,
and dynamic resource allocation. So it is difficult for parallel and distributed
simulation to achieve the expected performance. In order to exploit the expected
computational power of distributed resources, a suitable middleware concept
must be in place first. To address the issues of failure resistance, load balancing,
transparent executing of large scale simulation experiments in a domain spanning
fashion grid technology seems to be most suitable [9, 14].

In the case of multi-agent based simulation installed on a stand-alone com-
puter containing all agents, the agent communication is taking place in the same
physical memory. On the Grid, however, the agents are separated in different
machines and the communication involves transfer of data through the network.
The amount of involved network communication depends very much on how
the agents are separated. In this paper, we present a framework for large scale
multi-agent based simulation on grid taking into account the dynamic division
of agents over the Grid. We have modified the desktop grid platform BOINC
[1] for multi-agent based simulation. Assuming that the agents interact locally
with the environment, we proposed an approach to divide the agents for grid
nodes so that we can keep load balancing for the distributed simulation while
optimizing the communication between grid nodes and the grid server. We have
implemented the food foraging simulation [12] to evaluate the feasibility of the
framework.

The paper is organized as follows. Section 2 gives an overview of related
background. We present our platform in Section 3. The experiment with the
problem of ant colony system is described in Section 4.

2 Background

2.1 Multi-agent Based Simulation

Multi-agent based simulation is a bottom-up approach to understand the dy-
namics of a real system via the simulation of many individual agents interacting
with each other and with the environment. As agents are heterogeneous, au-
tonomous and pro-active actors, multi-agent based simulation allows modelling
of heterogeneous populations in which each agent might have personal motiva-
tions and incentives to represent groups and group interactions. This is based on
the idea that most work in human organisations is done based on intelligence,

224 D.P. Ho, T.D. Bui, and N.L. Do

Fig. 1. An overview of a multi-agent system

communication, co-operation, negotiation, and massive parallel processing [7].
With agents having fairly simple behaviour, the complex behaviour of the sytem
can be observed with multi-agent based simulation.

A simple overview of a multi-agent system used for simulation is described in
Figure 1. In agent based simulation, there are two types of interaction: interaction
between agents and the environment, and interaction among agents. However,
in a particular multi-agent based simulation, one often concentrates in one type
of interaction and ignore the other. Concentrating on which type of interaction
also influences very much the way a multi-agent based simulation system should
be distributed.

There are two main disadvantages in using multi-agent based simulation.
First, multi-agent based simulation has a higher level of complexity compared to
other simulation techniques as all the interactions between agents and between
the agent and the environment have to be defined. Second, multi-agent based
simulation has high computational requirements.

2.2 Distributed Multi-agent Based Simulation

Multi-agent based simulation should be distributed when there are a large num-
ber of agent involves. To present, however, there are not many works focusing on
distributed multi-agent based simulation, especially on agent-based simulation
on the Grid. Moreover these works only offer pure load balancing facilities which
would not allow them to scale well to a large number of agent.

MACE3J [6], a work in progress, uses proxies for interaction of hierarchically or-
dered simulation nodes. In order to perform progressive scaling of simulation, ser-
vices in MACE3J are deployed with GT3 using a hierarchical resource federation
approach. Arikawa and Murata [2] proposed an implementation of a Grid-based
multi-agent simulation by developing applications based on a parameter-sweepap-
proach. Their solution is to examine all given parameter specifications using dis-
tributed computing resources on the Grid by developing a computing environment
with a task control support framework. In essential, each computer will run only
one simulation with particular parameters. The use of the Grid system, however,
is just to find out the best set of parameters that is optimal according to defined

Dividing Agents on the Grid for Large Scale Simulation 225

Fig. 2. The desktop grid platform for multi-agent based simulation

criteria while the applications are independent. Timm and Pawlaszczyk [13] pro-
posed a conceptual model for large scale multi-agent simulation to perform the
feasibility analysis. However, simulation of realistic scenarios is missing to assess
the quality of service as well as performance of grid based simulation. In [10], a
model is proposed to predict the performance of multi-agent based simulation
on the Grid. With the input parameters of the number of agent, the number of
Grid node, the granularity, and the outbound communication rates, the model
identified several quantities of interest to be included in performance metrics:
simulation run time, thread setup time, and CPU utilization. The experiments
show that if the simulation is distributed on M machines, the expected speed up
factor will conventionally be equal to M . This factor is possible to archive greater
than M with large scale simulations. The measured CPU utilization data shows
that due to the communication latency, the system is idle for a considerable
part of time in case of small application. The workload of the system increases
with large application. The model, however, did not consider the failure which is
very common in the Grid system as well as the way to dynamically split agents
between computers to ensure the load balancing.

3 A Desktop Gird Platform for Multi-agent Based
Simulation

We have modified the desktop grid platform BOINC [1] for multi-agent based
simulation with the concentration on load balancing and system performance.
The modified platform can be seen in Figure 2. The platform has two layers: the
Grid Layer and the Application Layer.

In this desktop grid platform, any desktop computer in organization can join
the grid. Because the owner of the desktop computer can shutdown, reboot, re-
configure, connect, disconnect their computer to network at any time, numerous
faults can occur with the desktop environment. The Grid Layer is there re-
sponsible for managing the complexities of the environment in order to provide
the Application layer above with the simple abstraction. There are several

226 D.P. Ho, T.D. Bui, and N.L. Do

components in the Grid Layer: the Grid Server, the Grid Communica-
tion Server, and the Grid Scheduler. The Grid Communication Server
is responsible for reliable and secure communications between Grid Nodes and
the Grid Server. High quality cryptographic techniques are used to protect
application communications and data. The Grid Scheduler deals with unique
challenges of wide variety of configurations and capabilities of‘resources, from a
cheap PC to expensive clusters in the organization. It accepts units of computa-
tion from the Application above, matches them to appropriate client resources,
and schedules them for execution. For fault tolerance purposes, after defined
amount of time if the Grid Scheduler did not get the results from any Grid
Node, it will resend the task to another Grid Node to complete. Each Grid
Node is installed in a desktop computer. It creates a virtual host for application
running. It captures a status of the node (information about physical memory,
CPU speed, disk size and free space, software version, data cached, etc.). A Grid
Node also provides basic facilities for process management including, applica-
tion initiation and termination, and error reporting. It loads the task from the
Grid Server and then initializes it. For the Grid Node in BOINC, after exe-
cuting the task, it sends the result back to the Grid Server and terminates the
task. This mechanism does not allow the implementation of multi-agent based
simulation because the code of the agent should stay in the Grid Node, update
the environment status and send back the result frequently. We have modified
the Grid Node to allow this.

In the Application layer, the Agent Application Center is responsible for
dividing the application at the agent level. The agents are divided into groups in
a location based manner in order to minimize cross influence to the environment
between groups, thus minimize the communication between Grid Nodes and
the Grid Server while keeping load balance. A task comprising a group of
agents is then sent to the Grid Scheduler to schedule to run in Grid Nodes.
An Agent Runtime Environment is installed in each Grid Node to allow
the code of agents to be executed.

3.1 The Simulation Process

In this paper, we assume that the agents only interact locally with the environ-
ment. That means an agent can only see and influence the small surrounding
area of the point where it locates. There is no interaction between agents.

We use the time discrete model for the simulation. Supposed that at time
i, there are N Grid Nodes running simultaneously. The Agent Application
Center divides the environment into N areas. It then creates N jobs comprising
agents in these N areas and sends to the Grid Layer. The Grid Scheduler
will schedule the jobs for the N Grid Nodes. At each Grid Node, the Agent
Runtime Environment is initialized and the code of assigned agents is run for
the time i. After finishing, the state of the area as well as the state of each agent
will be returned to the Agent Application Center. The Agent Application
Center waits until all N results returned. Then it collects data and analysis
the environment again. There will be agents that leave an area to move to the

Dividing Agents on the Grid for Large Scale Simulation 227

new area. They will be removed from the old corresponding Grid Node and
transferred to the new corresponding Grid Node. If there are nodes joining
(or leaving) the Grid, the Agent Application Center needs to re-divide the
environment.

3.2 Dividing the Agents into Groups

In a normal agent based simulation platform, each agent is updated with the
status of the whole environment. However, this approach is not suitable for sim-
ulation on a grid because it requires highly intensive communication to update
the whole environment to every grid nodes, which might create a painful bottle-
neck at the server. To overcome this problem, we divide the whole environment
dynamically into areas. For load-balancing, the number of agent in each area
need to be roughly equal. The division should also be simple to be executed very
fast in the Agent Application Server. Suppose that the environment has a geo-
metrical shape of a rectangle. We now have to divide K agents into N groups.
We split the map vertically, so that each area is a rectangle contains roughly
K/N agents (see Figure 3). In this way, we want to minimize the number of
agent moving to new areas in each time step.

To ensure load-balancing perfectly, after each round, the division should be
done again. However, this takes time and may change the area of agents unnec-
essarily. We therefore only re-divide the environment in two cases. The first case
is when there are nodes joining (or leaving) the Grid - as a result, the number
of area changes. The second case is when the maximum difference between the
number of agent in each area is larger than a defined threshold. The change

Fig. 3. Dividing the agents into groups in a location based manner

228 D.P. Ho, T.D. Bui, and N.L. Do

in number of area as well as the information about agent changing areas are
managed by the Agent Area Managers in order to decide whether to re-divide
or not.

4 Experiments and Results

The problem we use to carry out the simulation experiments is the so-called
central nest foraging [12] for an ant colony, and it consists of two main phases:
starting from the nest and exploring for food, then starting from the food source
to carry the food back to the nest. The problem simulation is done based on the
pheromone based utility model proposed in [11].

The problem is described as follows: the environment is a nontoroidal grid
world and consists of a nest location and some N food source locations. Ants
leave the nest in search of the food sources. From any given square, an ant may
move to any eight-neighbor square which is not occupied by too many ants or
does not contain an obstacle. When it happens upon a food source, the ant
becomes laden with food. When reaching the nest again, the ant leaves the food
at the nest and begins searching again. The goal is to maximize the rate of food
brought to the nest from the food sources.

We have carried the experiment using 1, 2, 4, and 8 Grid nodes each with the
same specification of Pentium IV 2400 MHz processor and 1024 MB of memory
and running Windows XP operating system. All these nodes were interconnected
over a shared student laboratory LAN network of 100 Mbps. The Agent Appli-
cation Center with the Grid Server was installed on a separate computer. We
have run the simulation on a map of 7000x7000 for 100 time step and the time
(measured by minutes) taken for each experiment is shown in Table 1. As can
be seen from this Table, the framework allows the pretty good scalability when
the number of agent increases as well as when the grid nodes increases.

To estimate the communication overheads between Grid Nodes and the Grid
Server, we measure the number of bytes that was sent between Grid Nodes and
the Grid Server during the simulation. The result is shown in Figure 4. From the
figure, we can see that the more Grid Nodes joining the experiments, the more

Table 1. The time to run our simulation with 5000, 10000, 20000, 40000, 100000 and
200000 ants on 1, 2,4 and 8 computers (in minutes)

Number of ant 1 computer 2 computers 4 computers 8 computers
5000 24.53 12.921 6.531 3.200

10000 24.671 12.984 6.593 3.100
20000 25.000 13.265 6.409 3.205
40000 25.500 14.078 7.015 3.500

100000 27.2187 15.986 7.859 3.800
200000 29.9687 19.093 9.015 4.615

Dividing Agents on the Grid for Large Scale Simulation 229

Fig. 4. The communication overheads between Grid Nodes and Grid Server (in bytes)
for different number of Grid nodes and different number of ants

overhead are sent. When there is a node joining the experiment, the map will
be re-divided into more areas. As a result, the number of ant moving between
areas may increase. However, the communication overhead only increases linearly
when increasing the number of nodes taking part in the experiments.

5 Conclusion

Different from multi-agent based simulation on a single computer, on the Grid,
the agents are separated in different machines. The way the agents are sepa-
rated decides the amount of network communication among the Grid system.
Taking into account this, we have presented our framework for a desktop grid
platform based on BOINC for multi-agent based simulation. We have proposed
an approach to divide the agents to send to grid nodes so that we can keep load
balancing for the distributed simulation while optimizing the communication
between grid nodes and the grid server. We have implemented the food foraging
simulation to evaluate the feasibility of the framework. The experiments show
that the system scales pretty well when the number of agent increases as well as
when the number of grid node increases.

References

[1] Anderson, D.P.: Boinc: A system for public-resource computing and storage.
In: 5th IEEE/ACM International Workshop on Grid Computing (2004)

[2] Arikawa, H., Murata, T.: Implementation issues in a grid-based multi-agent
simulation system used for increasing labor supply. Review of Socionetwork
Strategies 1(1), 1–13 (2007)

[3] Axelrod, R.: Advancing the art of simulation in the social sciences. Com-
plexity 3(2), 193–199 (1997)

230 D.P. Ho, T.D. Bui, and N.L. Do

[4] Axtell, R., Epstein, J.M.: Growing Artificial Societies: Social Science From
the Bottom Up. MIT Press, Cambridge (1996)

[5] Berry, B.J.L., Kiel, L.D., Elliot, E.: Adaptive agents, intelligence, and emer-
gent human organization: Capturing complexity through agent-based mod-
eling. Proceedings of the National Academy of Sciences 1999 (suppl. 3),
7178–7188 (2002)

[6] Gasser, L., Kakugawa, K., Chee, B., Esteva, M.: Smooth scaling ahead: Pro-
gressive mas simulation from single pcs to grids. In: Proceedings of the Joint
Workshop on Multi-Agent & Multi- Agent-Based Simulation, Autonomous
Agents & Multi Agent Systems (AAMAS), pp. 1–10 (2004)

[7] Gazendam, H.W.M.: Theories about architectures and performance of
multi-agent systems. In: III European Congress of Psychology (1993)

[8] Gilbert, N., Troitzsch, K. (eds.): Simulation for the Social Scientist. Open
University Press, Buckingham (1999)

[9] Kim, C.H., Lee, T.D., Hwang, S.C., Jeong, C.S.: Grid-based parallel and
distributed simulation environment. In: Malyshkin, V.E. (ed.) PaCT 2003.
LNCS, vol. 2763, pp. 503–508. Springer, Heidelberg (2003)

[10] Mengistu, D., Lundberg, L., Davidsson, P.: Performance prediction of multi-
agent based simulation applications on the grid. In: Proceedings of WASET
1921 (2007)

[11] Panait, L., Luke, S.: A pheromone-based utility model for collaborative for-
aging. In: The Third International Joint Conference on Autonomous Agents
and Mutli-Agent Systems (2004)

[12] Sudd, J.H., Franks, N.R.: The Behavioral Ecology of Ants. Chapman &
Hall, New York (1987)

[13] Timm, I.J., Pawlaszczyk, D.: Large scale multiagent simulation on the grid.
In: Proceedings of the Workshop on Agent-based Grid Economics (AGE
2005) (2005)

[14] Zhang, C., Liu, Y., Zhang, T., Zha, Y.: Integration of the distributed sim-
ulation into the OGSA model. In: Li, M., Sun, X.-H., Deng, Q.-n., Ni, J.
(eds.) GCC 2003. LNCS, vol. 3032, pp. 200–204. Springer, Heidelberg (2004)

An Interest Rate Adjusting Method
with Bayesian Estimation in Social Lending

Masashi Iwakami1 and Takayuki Ito1,2

1 Nagoya Institute of Technology, Gokiso-cho Nagoya 4668555, Japan
2 Massachusetts Institute of Technology, Cambridge, MA 02142 USA

iwakami@itolab.mta.nitech.ac.jp,
ito.takayuki@nitech.ac.jp

Abstract. In social lending, in which an individual lends or borrows
money using an SNS network, a person who lends money must take a
risk that the money won’t be returned. Since social lending is a compara-
tively new field, very few studies have been made. Therefore, we present
an experimental assessment of the influence of the updating of an inter-
est rate using Bayesian estimation, which takes into consideration the
influence of groups with agents. Our method decreases dispersions of the
delay of the borrower in payment with the increasing loan history of
the borrower. As a result, when the lenders are risk-averse (risk means
the dispersions of the delay of the borrower at each interest rate), the
number of transactions increases. Therefore, our method is effective be-
cause it can cause the transactions of lenders who are risk-averse to
increase.

Keywords: Bayesian Estimation, Social Lending.

1 Introduction

In recent years, social lending has been spreading. Social lending is, in its broad-
est sense, a certain breed of financial transaction (primarily lending and bor-
rowing) that occurs directly on the Internet between individuals without the
intermediation/participation of a traditional financial institution. The follow-
ings are the reasons social lending is spreading.

1. For a lender, lending money through social lending gives a higher interest
rate than depositing with a deposit company.

2. For a borrower, borrowing money through the social lending gives a lower
interest rate than borrowing money from a loan company.

3. For a borrower, it is easy to pass the loan examination.
4. There is a sense of security based on the information disclosure of SNS.

The reason for (1) and (2) is that an unnecessary fee such as a brokerage fee
is not required. The reason for (3) is that there are many lenders. A bank is
only one lender, whereas in social lenging there are many lenders. The reason

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 231–238, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

232 M. Iwakami and T. Ito

for (4) is that the past history and preferences of users can be seen in the SNS
community. With increasing information about the borrower, it will be easy for
the lender to judge the borrower.

In the last few years, the number of social lending companies has increased.
For example, the following companies are famous social lending companies:
PROSPER[8], Lending Club[9], Zopa[10]. Each companies has unique attributes.
PROSPER adopts an auction procedure for the interest rate decision of the
borrower. The lender who bids for the smallest interest rate for a borrower is
selected as an agency to lend money. Lending Club decides the interest rate of
the borrower based on the FICO score, etc. This company has the feature that
it matches lenders and borrowers with its original development engine. Zopa
runs a business in two or more countries and there is a difference in the interest
rate decision method in every country. Zopa of USA makes the decision on the
interest rate and the examination of the financing in cooperation with a credit
cooperative. The capital of lenders is put in a certificate of deposit that the
federal government guarantees. Thus, it has the feature that the invested money
will certainly be returned with interest even if payment failure occurs.

In social lending, lenders must bear risk. This is because the default risk in
the financing moves from a loan company such as a bank to the lenders because
of lending and borrowing money among individuals. Therefore, it is a subject of
interest as to how a management site determines the interest rate corresponding
to the borrower’s risk. Since this social lending is a comparatively new field, very
few studies have been made. Therefore, in this paper, we present a preliminary
experimental result of the influence of the updating of an interest rate using
Bayesian estimation, which takes into consideration the influence of groups with
agents. The goal of the method this article suggests is to minimize risk. With
Bayesian estimation, the accuracy of the interest rate presumption improves
with the increasing loan history of the borrower. There are some definitions of
the risk; we define the condition (dispersion) of the return rate in each rate as a
risk.

Social lending mechanisms are one of the newest electronic markets. Re-
searchers in multi-agent systems [Weiss,2000] and computational mechanism de-
signs [Nisan,2008;Cramton,2006;Dash,2003] are focusing on building an efficient
mechanism or a rule for self-interested agents who have private information. A
social lending mechanism is such a mechanism for lending and borrowing money
among self-interested agents. However, there have been no such studies on social
lending mechanisms because they are quite new. Thus, in this paper, we focus
on a new method for adjusting interest rates as a first step in social lending
mechanisms, which has not been proposed or studied yet.

The remainder of the paper is organized as follows. First, we propose a new
model of the interest rate decision model used in this dissertation. Second, we
describe the outline of the simulation by the agent. Third, we present an ex-
perimental assessment of this model. Finally, we conclude with a discussion of
possible avenues for future work.

An Interest Rate Adjusting Method with Bayesian Estimation 233

2 The Interest Rate Decision Model

2.1 Bayesian Estimation Considering Influence of Group

In Bayes’ theorem, the observed phenomenon is used and posterior probability
distribution is updated by a likelihood. The shape of the posterior probability
distribution is different depending on the setting of the likelihood. In this paper,
we propose a method of adding the payment delay probability distributions of
the group to which a borrower belongs to a likelihood at a fixed rate.

The reason to add the probability distribution of the group to the likelihood is
based on comprehensive thinking. For instance, let’s assume a scene in which you
judge a student’s scholastic achievements. At this time, assuming that student A
of the highest grade class got 0 points on a 100-point test, the scholastic ability
of this student A is 0 points if you judge his ability only from the individual test
result. However, it is rare for a student of the highest grade class to get 0 points.
It seems to be that there was some accident. Therefore, he is judged taking into
consideration the average marks of the students of his class. You can give mark
to A take the fact that he is the student of the highest grade class into account.
Taking the influence of the group into consideration provides a more realistic
assessment of student A.

Let us, for the moment, call the probability that a borrower is behind on a
payment probability π. Also, X is defined to be 1, 0, depending on whether there
is a delay or no delay.

X =
{

1 (delay)
0 (no delay)

The delay probability is π. The probability distribution of X is defined as follows.

Pr{X = x} =
{

π (x = 1)
1− π (x = 0) (1)

X is a random variable. x is a realization value. Also, (1) is defined as follows.

p(x|π) = Pr{X = x}
It follows that p(x|π) is the probability function of X . This probability function
p(x|π) is equivalent to the likelihood of the borrower in the Bayes’ theorem. In
our method, we apply the likelihood as follows.

l(π|x) = p(x|π)·Prgroup (2)

This is the likelihood of the borrower multiplied by the payment delay probability
distributions of the groups to which a borrower belongs.

When a borrower belongs to N groups, it is a natural idea to give a priority
to the groups and take the weighted mean of those probability distribution.
Therefore, Prgroup is defined as follows.

Prgroup =
N∑

k=1

wkPrk (
N∑

k=1

wk = 1) (3)

Here, wk is the weight for each probability of the groups.

234 M. Iwakami and T. Ito

3 Interest Rate Correction of the Borrower with Bayesian
Estimation

The steps for modifying interest of borrowers with the likelihood consists of the
following four steps.

[Step 1: Calculation of posterior distribution] Posterior distribution is calcu-
lated from the borrower’s repayment history by using the likelihood of the (2).
The calculating formula is as follows.

p(π|x) = K·l(π|x)p(π) (4)

x is an observed event. p(π) is a prior distribution. K is a standardization fixed
number. In the calculating formula of (4), K is the value to satisfy expression
(5). ∫ 1

0
K·l(π|x)p(π)dπ = 1 (5)

[Step 2: Calculation of the predictive delay probability] The delay probability
is calculated by using the posterior distribution calculated in Step 1. The predic-
tive delay probability is the expectation of the posterior distribution. Therefore,
the desired delay probability Prob is defined as follows.

Prob =
∫ 1

0
πp(π|x)dπ (6)

[Step 3: Calculation of the proper rate] On the basis of the predictive delay
probability that was calculated in Step 2, the proper interest rate is calculated.
Since there is an average delay probability for every interest rate, the interest
rate of the nearest delay probability is selected from among them.

[Step 4: Adjustment of the rate] The interest rate requested in Step 3 is
compared with the present interest rate of the borrower. When the interest rate
that was calculated in Step 3 is much different from the present interest rate, the
interest rate is corrected. Concretely, when the interest rate requested in Step
3 is larger than the present interest rate by one interest rate unit or more, the
interest rate is raised by one interest rate unit. When the interest rate requested
in Step 3 smaller than the present interest rate by one interest rate unit or more,
the interest rate is lowered by one interest rate unit. The following illustrates
the interest rate adjustment algorithm shown in 3.

1. procedure rate_adjustment(BorrowerAgent)
2. post = PostDistribution(BorrowerAgent)
3. predictedProb = PredictProbability(post)
4. properInterest = GetProperInterest(predictedProb)
5. step = 0.1
6. if properInterest > currentInterest + step
7. IncreaseInterest(BorrowerAgent)
8. elseif currentInterest - step > properInterest
9. DecreaseInterest(BorrowerAgent)
10. end
11. return

An Interest Rate Adjusting Method with Bayesian Estimation 235

The range of the interest rate applied to this experiment is assumed to be ten
stages for simplification. The width of the interest rate is assumed to be 1% unit.
The minimum interest rate is 1%, and then the next interest rate is 2%, 3%,...,
10%. The maximum interest rate is 10%. As the return delay probability of the
borrower increases, the interest rate of the borrower increases. For instance, 1%
is the interest rate of the borrower whose delay probability is 10%. 2% is the
interest rate of the borrower whose delay probability is 20%.

4 Experiments

4.1 Agent Simulation

In this paper, we conducted agent simulations to see how the rate adjustment
mechanism works. Concretely, plural borrower agents and plural lender agents
are interacted and matched in simulations. By matching processing, we examine
whether the lender agent finances the borrower agent. The borrower agent has
a random delay probability, and generates the payment delay according to the
probability. The lender agent confirms the borrower agent’s repayment history
when matching it, and decides whether or not it can finance the borrower ac-
cording to each utility function (the function that decides whether or not it can
finance the borrower). We expected that the interest rate adjustment mechanism
functions well when the number of transactions is many.

There are three main types of lenders: a risk-averse-type agent, a risk-neutral-
type agent, and a risk-seeking-type agent. Each type is different in risk refusal
coefficient λ in the (7). For instance, the risk-averse type has λ = 1, the risk-
neutral type has λ = 0, and the risk-seeking type has λ = −1. The risk refusal
coefficient is a coefficient to affect dispersion of the delay probability of plural
agents at every rate.

In the field of financial engineering[1], it is thought that a brand that has a
large dispersion such as profit dispersion is high-risk. When thinking about the
delay frequency of the borrower agent in each interest rate as profit, it will be
the same as the brand of the investment. The distribution of the delay frequency
of each interest rate is considered as a risk. By the way, the utility function of
the lender agent is defined as follows.

U = R − λσ2 (7)

R is an expectation return, λ is a risk refusal coefficient, and σ2 is a dispersion
of the delay frequency.

4.2 Setting

In this experiment, the borrower agent who held the delay probability generated
at random inside is generated. Ten payments are carried out respectively, and
repayment is repeated 20 times. The lender agents judge whether or not they
can lend money to the borrower based on their utility functions, whenever ten

236 M. Iwakami and T. Ito

repayments end. In the actual experiment, the operation mentioned above is
repeated 100 times. The average of 100 operations is adopted as the result.

The parameters in this experiment are as follows.

– Number of borrower agents: 100
– Number of lender agents: 100
– Interest rate width: 0.01‘0.10(10 step)
– Delay probability of borrower agent: {0, 0.1, 0.2, ..., 0.9}
– Risk refusal coefficient of lender: {−1, 0, 1}

In our experiments, we ran 100 negotiations in every condition. Our code was
implemented in MATLAB R2008a.

4.3 Experimental Results

Figure 1 shows two graphs when the interest rate is adjusted and when the
interest rate is not adjusted. In the graph of Figure 1, the sum of dispersions
of the repayment delay rate of the agent at each interest rate was used as a
comparison method. In the method for not adjusting the interest rate, the change
was not seen in the sum of dispersions though the number of dealings increased.
In the method for adjusting the interest rate, the result of the sum of dispersions
of each interest rate decreased as the number of dealings increased. The reason
the sum of dispersions decreases is that the repayment delay rate of the set
interest rate approaches the repayment delay rate of the borrower. As mentioned
above, with interest rate correction of a borrower using Bayes’ estimation, the

0 5 10 15 20

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

The number of dealingsT
h
e

s
u
m

o
f

d
i
s
p
e
r
s
i
o
n
s

e
v
e
r
y

i
n
t
e
r

Interest adjustment

No interest adjustment

Fig. 1. Dispersion

An Interest Rate Adjusting Method with Bayesian Estimation 237

0 5 10 15 20
0

20

40

60

80

100

The number of dealings

T
h
e

n
u
m
b
e
r

o
f

d
e
a
l
i
n
g
s

a
p
p
r
o
v
a
l

risk neutral

risk aversion

risk seeking

Fig. 2. Number of dealings

dispersions of the repayment delay rate of the borrower for each interest rate
decrease.

Figure 2 shows the comparison of the numbers of dealings approved. These
are the graphs of a risk-seeking type, a risk-neutral type, and a risk-averse type
respectively. The number of dealings approved decreased for the risk-seeking
type agent whenever the number of dealings increased. On the other hand, the
number of dealings approved increased for the risk-averse type agent whenever
the number of dealings increased. The change was not seen for the risk-neutral-
type agent in the number of dealings approved. The reason for these results
is that the dispersion of each interest rate decreases whenever the number of
dealings increases.

It turned out that it is possible to increase the number of dealings to a risk-
averse-type agent by making an interest rate correction of a borrower using
Bayes’ estimation. In general, people tend to be risk-averse. Thus, this result
implies a possibility that our interest rate correction method could increase the
number of dealings. Future work include more detailed comparisons between
the case of risk-neutral agents and the case of risk-averse agents. Also, mixing
the types could cause the number of dealings approved.

5 Conclusions

In this paper, we proposed a rate update algorithm using the Bayes’ update
in the field of social lending. With this method, small interest rate dispersion
is attained with the increasing loan history of the borrower. As a result, when the

238 M. Iwakami and T. Ito

lender is risk-averse, the number of transactions increases. Therefore, our method
is effective because it can cause the transactions of lenders who are risk-averse
to increase. A topic for future research is proposal of a method of deciding the
proper interest rate even when the amount of data is small.

References

1. Luenberger, D.G.: Investment Science. Oxford University Press, Oxford (1997)
2. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial In-

telligence. MIT Press, Cambridge (2000)
3. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pren-

tice Hall, Englewood Cliffs (2002)
4. Dash, R.K., Jennings, N.R., Parks, D.C.: Computational-Mechanism Design: A

Call to Arms. IEEE Intelligent Systems 18, 40–47 (2003)
5. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press, Cam-

bridge (2006)
6. Bolstad, W.M.: Introduction to Bayesian Statistics. Wiley Interscience, Hoboken

(2007)
7. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.

Cambridge University Press, Cambridge (2007)
8. Prosper, http://www.prosper.com/
9. LendingClub, http://www.lendingclub.com/home.action

10. Zopa, https://us.zopa.com/

http://www.prosper.com/
http://www.lendingclub.com/home.action
https://us.zopa.com/

A Temporal Logic for Stochastic Multi-Agent
Systems

Wojciech Jamroga

Department of Informatics, Clausthal University of Technology, Germany
wjamroga@in.tu-clausthal.de

Abstract. Typical analysis of Markovian models of processes refers only
to the expected utility that can be obtained by the process. On the other
hand, modal logic offers a systematic method of characterizing processes
by combining various modal operators. A multivalued temporal logic for
Markov chains and Markov decision processes has been recently proposed
in [1]. Here, we discuss how it can be extended to the multi-agent case.
We relate the resulting logic to existing (two-valued) logics of strategic
ability, and present fixpoint characterizations for some natural combina-
tions of strategic and temporal operators.

Keywords:Temporal logic, multi-agent system,Markov decision process.

1 Introduction

There are many different models of agents and multi-agent systems; however,
most of them follow a similar pattern. First of all, they include information
about possible situations (states of the system) that defines relations between
states and their external characteristics (essentially, “facts of life” that are true
in these states). Second, they provide information about relationships between
states (e.g., possible transitions between states). Models that share this structure
can be, roughly speaking, divided into two classes. Qualitative models provide
no numerical measures for these relationships. Quantitative models assume that
relationships are measurable, and provide numerical information about the de-
grees of relations. In [1], we explored analogies between transition systems and
Markovian models in order to provide a more expressive language for reasoning
about, and specification of agents in stochastic environments. In [2], we tenta-
tively extended the framework to the multi-agent case. Here, we present some
formal results on the multi-agent version of the language.

Analysis of quantitative process models is usually based on the notion of ex-
pected reward. On the other hand, logical approaches are most often concerned
with “limit properties” like the existence of an execution path that displays a spe-
cific temporal pattern. We believe that both kinds of properties are interesting
and worth using to describe processes. For instance, besides the expected value
of cumulative future reward, we can ask of the maximal (or minimal) cumulative
reward. Or, we might be concerned with the expected value of minimal guaran-
teed reward etc. A typical analysis of multi-agent Markov decision processes is

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 239–250, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

240 W. Jamroga

even more constrained, as we assume that all the agents in the system cooperate
to achieve a common goal (i.e., maximize their common expected cumulative
reward). Our extension allows to study the outcomes that can be obtained by
various groups of agents.

The roots of our proposal can be traced back to multivalued logics on one hand
(e.g., fuzzy logics [3] and probabilistic logics [4,5]), and (crisp) modal logics of
probability [6,7,8] on the other. A closer inspiration comes from multi-valued
modal logics [9,10,11,12,13]. Of the latter, [11,12,13] are particularly relevant, as
they define multi-valued versions of temporal logic. Still, the version of Markov
Temporal Logic proposed here is (to our best knowledge) the first multivalued
logic for reasoning about strategic abilities of agents in stochastic multi-agent
systems.

We begin by recalling the basic idea of Markov Temporal Logic (mtl) from [1]
(Section 2). The remaining sections present the original contribution of the pa-
per: the syntax and semantics of the multi-agent mtl was only presented at a
workshop with informal proceedings [2], and the theoretical results (relationship
to ATL∗, fixpoint properties) are entirely new.

2 Markov Temporal Logic

In this section we recall the idea of Markov Temporal Logic (mtl) from [1]. The
logic allows for flexible reasoning about outcomes of agents acting in stochastic
environments. The core of the logic is called mtl0, and addresses outcomes of
Markov chains. Intuitively, mtl0 can be seen as a quantitative analogue of the
branching-time logic ctl* [14].

2.1 Basic Models: Markov Chains

Typically, a Markov chain [15,16] is a directed graph with probabilistic transition
relation. In our definition, we include also a device for assigning states with
utilities and/or propositional values. This is done through utility fluents which
generalize atomic propositions in modal logic in the sense that they can take
both numerical and qualitative truth values.

Definition 1 (Domain of truth values). A domain D = 〈U,�,⊥, u〉 consists
of: (1) a set U ⊆ R of utility values (or simply utilities); (2) special values
�,⊥ standing for the logical truth and falsity, respectively; Û = U ∪ {�,⊥}
will be called the extended utility set; and, finally, (3) a complement function
u : Û → Û . A domain should satisfy the conditions specified in [1], omitted here
for lack of space.

Definition 2 (Markov chain). A Markov chain over domain D=〈U,�,⊥, u〉,
and a set of utility fluents Π is a tuple M = 〈St, τ, π〉, where:

– St is a set of states (we will assume that the set is finite and nonempty
throughout the rest of the paper);

Temporal Logic for Stochastic Multi-Agent Systems 241

– τ : St× St→ [0, 1] is a stochastic transition relation that assigns each pair
of states q1, q2 with a probability τ(q1, q2) that, if the system is in q1, it will
change its state to q2 in the next moment. For every q1 ∈ St, τ(q1, ·) is
assumed to be a probability distribution, i.e.

∑
q∈St τ(q1, q) = 1.

By abuse of notation, we will sometimes write τ(q) to denote the set of states
accessible in one step from q, i.e. {q′ | τ(q, q′) > 0}.

– π : Π × St→ Û is a valuation of utility fluents.

A run in Markov chain M is an infinite sequence of states q0q1 . . . such that
each qi+1 can follow qi with a non-zero probability. The set of runs starting
from state q is denoted by RM (q).1 Let λ = q0q1... be a run and i ∈ N0. Then:
λ[i] = qi denotes the ith position in λ, and λ[i..∞] = qiqi+1 . . . denotes the
infinite subpath of λ from position i on.

2.2 Logical Operators as Minimizers and Maximizers

Note that – when truth values represent utility of an agent – temporal operators
“sometime” and “always” have a very natural interpretation. “Sometime p” (�p)
can be rephrased as “p is achievable in the future”. Thus, under the assumption
that agents want to obtain as much utility as possible, it is natural to view the
operator as maximizing the utility value along a given temporal path. Similarly,
“always p” (�p) can be rephrased as “p is guaranteed from now on”. In other
words, �p asks for the minimal value of p on the path. On a more general
level, every universal quantifier is essentially a minimizer of truth values, while
existential quantifiers can be seen as maximizers. Thus, Eγ (“there is a path
such that γ”) maximizes the utility specified by γ across all paths that can
occur; likewise, Aγ (“for all paths γ”) minimizes the value of γ across paths.
Also, disjunction and conjunction can be seen as a maximizer and a minimizer:
ϕ ∨ ψ reads easily as “the utility that can be achieved through ϕ or ψ”, while
ϕ ∧ ψ reads as “utility guaranteed by both ϕ and ψ”.

2.3 MTL0: A Logic of Markov Chains

Operators of mtl0 include path quantifiers E, A, M for the maximal, mini-
mal, and average outcome of a set of temporal paths, respectively, and tem-
poral operators �, �, m for the maximal, minimal, and average outcome along
a given path.2 Propositional operators follow the same pattern: ∨,∧,⊕ refer to
maximization, minimization, and weighted average of outcomes obtained from
different utility channels or related to different goals. Finally, we have the “de-
fuzzification” operator �, which provides a two-valued interface to the logic.
ϕ1 � ϕ2 yields “true” if the outcome of ϕ1 is less or equal to ϕ2, and “false” oth-
erwise. Among other advantages, it allows to define the classical computational
problems of validity, satisfiability and model checking for mtl.
1 If the model is clear from the context, the subscripts will be omitted.
2 We allow to discount future outcomes with a discount factor c. Also, we introduce

the “until” operator U , which is more general than �.

242 W. Jamroga

Let Bool(ω) = ¬ω | ω∧ω | ω⊕c ω | ω � ω denote quasi-Boolean combinations
of formulae of type ω. The syntax of mtl0 can be defined by the following
production rules:

ϕ ::= p | Bool(ϕ) | Eγ | Mγ,

γ ::= ϕ | Bool(γ) | �
c γ | �cγ | γ Uc γ | mcγ,

where p ∈ Π is a utility fluent, and c is a discount factor such that 0 < c ≤ 1.
Additionally, we define ϕ1 ∼= ϕ2 ≡ (ϕ1 � ϕ2) ∧ (ϕ2 � ϕ1). Boolean constants
T, F (“true”, “false”), disjunction, and the “sometime” temporal operator � are
defined in the standard way. The following shorthands are used for discount-free
versions of temporal operators: �≡ �

1 , � ≡ �1, � ≡ �1, U ≡ U1 .

Example 1. Let r be a utility fluent that represents the immediate reward at each
state. The following mtl0 formulae define some interesting characteristics of a
process: Mm0.9r (expected average reward with time discount 0.9), Am0.9r (guar-
anteed average reward with the same discount factor), M�r (expected minimal
undiscounted reward), and A�r (guaranteed maximal reward).

The main idea behind mtl0 is that formulae can refer to both quantitative
utilities and qualitative truth values. Thus, we treat complex formulae as fluents,
just like the atomic utility fluents from Π , through a valuation function that
assigns formulae with extended utility values from Û . Let M = 〈St, τ, π〉 be a
Markov chain over domain D = 〈U,�,⊥, u〉 and a set of utility fluents Π . The
valuation function [·] is defined below.

– [p]M,q = π(p, q), for p ∈ Π ;
– [¬ϕ]M,q = [ϕ]M,q;
– [ϕ1 ∧ ϕ2]M,q = min([ϕ1]M,q, [ϕ2]M,q);
– [ϕ1 ⊕c ϕ2]M,q = (1− c) · [ϕ1]M,q + c · [ϕ2]M,q;
– [ϕ1 � ϕ2]M,q = � if [ϕ1]M,q ≤ [ϕ2]M,q and ⊥ else;
– [Eγ]M,q = sup{[γ]M,λ | λ ∈ R(q)};
– The Markovian path quantifier Mγ produces the expected truth value γ

across all the possible runs, cf. [16] for the formal construction;
– [ϕ]M,λ = [ϕ]M,λ[0];
– [¬γ]M,λ, [γ1 ∧ γ2]M,λ, [γ1 ⊕c γ2]M,λ, [γ1 � γ2]M,λ: analogous to Boolean com-

binations of “state formulae” ϕ;
– [�

c γ]M,λ = c · [γ]M,λ[1..∞];
– [�cγ]M,λ = infi=0,1,...{ci[γ]M,λ[i..∞]};
– [γ1 Uc γ2]M,λ =supi=0,1,...

{
min(min0≤j<i{cj[γ1]M,λ[j..∞]}, ci[γ2]M,λ[i..∞])

}
;

– The Markovian temporal operator mc produces the average discounted re-
ward along the given run:

[mcγ]M,λ=

⎧⎨
⎩

(1−c)
∑∞

i=0 ci[γ]M,λ[i...∞] if c<1

lim supi→∞
1

i+1

�i
j=0[γ]M,λ[j...∞]+lim infi→∞

1
i+1

�i
j=0[γ]M,λ[j...∞]

2 if c=1

Temporal Logic for Stochastic Multi-Agent Systems 243

3 Reasoning about Stochastic Multi-agent Processes

Strategic abilities were already considered in mtl1, the version of Markov Tem-
poral Logic for reasoning about Markov decision processes [1]. In consequence,
mtl1 can be seen as a quantitative analogue of the single-agent fragment of
ATL∗ [17] with memoryless strategies. In the more general case, a system can
include multiple agents/processes, interacting with each other. To address their
properties, a family of operators 〈〈A〉〉 can be used, parameterized with groups of
agents A. Intuitively, 〈〈A〉〉ϕ refers to how much agents A can “make out of” ϕ by
following their best joint policy. This yields a language similar to the alternating-
time temporal logic ATL∗ from [17], albeit with strategic operators separated
from path quantifiers.

Markov decision processes [18,19] extend Markov chains with an explicit ac-
tion structure: transitions are generated by actions of an (implicit) decision
maker. Multi-agent Markov decision processes (mmdp) [20] extend Markov de-
cision processes to the multi-agent setting: transitions are now labeled by com-
binations of agents’ actions. We observe the similarity between mmdp’s and
concurrent game structures which are the models of ATL∗ (cf. Figure 1).

As models for our multi-agent mtl, we will use a refinement of mmdp’s similar
to the version of Markov chains presented in Section 2.1. The semantics of 〈〈A〉〉ϕ
is based on maximization of the value of ϕ with respect to A’s joint strategies.
We assume that the opponents play a strategy that minimizes ϕ most. This way,
operator 〈〈A〉〉 corresponds to the maxmin of the two-player game where A is the
(collective) maximizer, and the rest of agents fills in the role of the (collective)
minimizer. Note that such a semantics entails that the opponents of A must also
play only memoryless (i.e., Markovian) strategies.

q1

q2

q3

��� :0.5

��� :0.5

��� :1.0

��� :0.2

��� :0.1

��� :0.7

��� :1.0

��� :0.3

��� :0.7R=0.2

R=0

R=1

��� :1.0

��� :0.1

��� :0.9

q1

q2

q3

���

��� ���

���
���

���

���

���

���

���

���

���

p=�
q=�

p=�
q=

�

p=

q=�

�

(a) (b)

Fig. 1. (a) Simple mmdp with two agents; (b) Simple concurrent game structure

244 W. Jamroga

3.1 MTL2: Syntax

Let Agt be the set of all agents. mtl2 adds to mtl0 a family of operators 〈〈A〉〉,
one for each group of agents A ⊆ Agt. Formally, the syntax of mtl2 is given by
the following grammar:

ϑ ::= p | Bool(ϑ) | 〈〈A〉〉ϕ,

ϕ ::= ϑ | Bool(ϕ) | Eγ | Mγ,

γ ::= ϕ | Bool(γ) | �
c γ | �cγ | γ Uc γ | mcγ.

An example formula of mtl2 is 〈〈1, 2〉〉Amr which makes agents 1 and 2 maximize
the guaranteed average reward r with respect to their available policies.

3.2 MTL2: Semantics

The semantics of mtl2 is defined for a version of multi-agent Markov decision
processes that incorporates qualitative as well as quantitative atomic properties
of states.

Definition 3 (mmdp). A multi-agent Markov decision process over do-
main D = 〈U,�,⊥, u〉 and a set of utility fluents Π is a tuple M =
〈Agt, St, {Acti}i∈Agt, τ, π〉, where: St, π are like in a Markov chain, Agt =
{1, . . . , k} is the set of agents, Acti is the set of individual actions of agent
i, and Act =

∏
i∈Agt Acti is the space of joint actions (action profiles).

τ : St × Act × St → [0, 1] is a stochastic transition relation; τ(q1, α, q2) de-
fines the probability that, if the system is in q1 and the agents execute α,
the next state will be q2. For every q ∈ St, α ∈ Act, we assume that either
(1) τ(q, α, q′) = 0 for all q′ (i.e., α is not enabled in q), or (2) τ(q, α, ·) is
a probability distribution. Additionally, we define act(q) = {α ∈ Act | ∃q′.
τ(q, α, q′) > 0} as the set of enabled action profiles in q.

For a joint action α, we define αi to denote agent i’s individual part in α,
and we extend the notation to sets of joint actions and agents. Also, let A be
a set of action profiles, and α a collective action of agents A. Then, A|α =
{β ∈ A | βA = α} is the set of action profiles that include α.

A policy is a conditional plan that specifies future actions of an agent. Policies
can be stochastic as well, thus allowing for randomness in the agent’s play.

Definition 4. An individual strategy (policy) of agent i is a function si : St×
Acti → [0, 1] that assigns each state q with a probability distribution over i’s
enabled actions act(q)i. That is, s(q, αi) ∈ [0, 1] for all q ∈ St, αi ∈ act(q)i,
and

∑
αi∈act(q)i s(q, αi) = 1. Values of s(q, αi) for αi /∈ act(q)i are irrelevant.

The set of all i′s strategies is denoted by Σi. A collective strategy sA for team
A ⊆ Agt is simply a tuple of individual strategies, one per agent from A. The set
of all A’s collective strategies is given by ΣA =

∏
i∈A Σi. The set of all strategy

profiles in a model is given by Σ = ΣAgt.

For a collective strategy s, we define si as the i’s individual part in s. We also
extend the notation to sets of agents.

Temporal Logic for Stochastic Multi-Agent Systems 245

Definition 5. Policy s∈ΣA instantiates mmdp M=〈Agt, St, {Acti}i∈Agt, τ, π〉
to a simpler mmdp M† s = 〈Agt \A, St, {Acti}i∈Agt\A, τ ′, π〉 with

τ ′(q, α, q′) =
∑

α′∈(act(q)|α)

(
∏
i∈A

si(q, α′)) τ(q, α′, q′).

If A = Agt, then s instantiates M to a Markov chain.

The semantics of mtl2 extends that of mtl0 with the following clauses:

– [p]M,q = π(p, q), for p ∈ Π ;
– [¬ϑ]M,q, [ϑ1 ∧ ϑ2]M,q, [ϑ1 ⊕c ϑ2]M,q, [ϑ1 � ϑ2]M,q: analogous as for “state

formulae” ϕ;
– [〈〈A〉〉ϕ]M,q = sups∈ΣA

inft∈ΣAgt\A
{[ϕ]M†〈s,t〉,q};

In order to keep consistent with qualitative logics of strategic ability, we assume
that instantiation of an mmdp by a policy s is “soft” in the sense that nested
strategic operators discard previous instantiations and instantiate the original
model again: [〈〈A〉〉ϕ]M†s,q = [〈〈A〉〉ϕ]M,q.

Example 2. Consider the multi-agent Markov decision process from Figure 1A,
consisting of two agents (1 and 2). If the agents cooperate, they can maximize
the expected achievable reward quite successfully, as [〈〈1, 2〉〉M�R]q1 = 0.9 (best
policy: both agents play β in q1 with probability 1; the choices at other states are
irrelevant). If agent 1 is to maximize the expected achievable reward on his own,
against adversary behavior of agent 2, then he is bound to be less successful:
[〈〈1〉〉M�R]q1 = 0.6. Also, in this case agent 1 should employ a different policy,
namely play α in q1 with probability 1.

4 Formal Results

The semantics of mtl, presented in the previous section, portrays it as a language
of arithmetic expressions that can be used to define numerical characteristics of
Markov processes. However, mtl can be also seen as a logic, i.e. a set of sentences
that are true in some contexts, and false (at least to a degree) in others. This
view allows us to use the conceptual apparatus of mathematical logic to study
e.g. the expressivity of the language. Also, we can state interesting properties of
the domain (multi-agent stochastic processes) through formulae of mtl. To this
end, we first define what it means for a formula to be valid and/or satisfiable.

4.1 Levels of Truth

Since every domain must include a distinguished value for the classical (com-
plete) truth, validity of formulae can be defined in a straightforward way.

Definition 6 (Levels of validity). Let M be a multi-agent Markov decision
process, q a state in M, and ϑ a formula of mtl2. Then:

246 W. Jamroga

– ϑ is true in M, q (written M, q |= ϑ) iff [ϑ]M,q = �.
– ϑ is valid in M (written M |= ϑ) iff it is true in every state of M.
– ϑ is valid for multi-agent Markov decision processes (written |= ϑ) iff it is

valid in every mmdp M.
– Additionally, for path formulae γ, we can say that γ holds on run λ in mmdp
M (written M, λ |= γ) iff [γ]M,λ = �.

The notion of validity helps to express general properties of stochastic multi-
agent systems in a neat logical way. Moreover, Definition 6 allows to define the
typical decision problems for mtl2 in a natural way:

– Given a formula ϑ, the validity problem asks if |= ϑ;
– Given a formula ϑ, the satisfiability problem asks if there areM, q such that
M, q |= ϑ;

– Given a model M, state q and formula ϑ, the model checking problem asks
if M, q |= ϑ.

For example, we can search for a model in which agent a can guarantee the
average reward r to be at least 0.6 in the long run by solving the satisfiability
problem for formula 0.6 � 〈〈a〉〉Amr.

We consider model checking the most important of the three problems, since
in the analysis of a stochastic system the domain specification is usually given
by a procedural representation (rather than axiomatic theory). Some work on
model checking multi-valued temporal logics has been reported in [11,12]. Per-
haps even more importantly, computing approximate “solutions” of mdp’s is one
of the central issues studied by the Markov community. Integration of the two
approaches seems a very promising (and exciting) path for future research.

4.2 Concurrent Game Structures as MMDP’s. Correspondence
between MTL2 and ATL*

Multi-agent Markov decision processes can be seen as generalizations of concur-
rent game structures [17], in which quantitative information is added through
non-classical values of atomic statements and probabilities of transitions. Con-
versely, concurrent game structures can be seen as a subclass of mmdp’s with all
fluents assuming only classical truth values.

Definition 7. Let M be an mmdp. Formula ϕ is propositional in M iff it can
take only the values of �,⊥, i.e., [ϕ]M,q ∈ {�,⊥} for all q ∈ St. A concurrent
game structure is an mmdp with only propositional fluents.

This way, we obtain the class of models that are used for qualitative alternating-
time logics, i.e. ATL and ATL∗. Of course, when interpreting formulae of
qualitative ATL / ATL∗, one must as well ignore the probabilities that are
present in Markov decision processes. Note also that the semantics of the original
ATL / ATL∗ uses the “history-based” notion of a strategy (i.e., strategies assign
choices to histories rather than single states), while our mtl2 is underpinned
by a much weaker notion of memoryless (or positional) strategies. This makes

Temporal Logic for Stochastic Multi-Agent Systems 247

the two logics formally incomparable. However, we can show that mtl2 strictly
generalizes the memoryless version of ATL∗. The latter was studied in [21]
under the acronym of ATLIr∗ (ATL with Perfect Information and imperfect
recall), and we will use the name here.

Proposition 1. Let M be a transition system, and ϕ a formula of ATLIr∗.
Moreover, let ϕ′ be the result of replacing every occurrence of 〈〈A〉〉 with 〈〈A〉〉A
in ϕ for all A ⊆ Agt. Then, M, q |=mtl2

ϕ′ iff M, q |= ATLIr∗ ϕ.

Proof (sketch). Let σA denote the set of deterministic memoryless strategies of
group A.3 The proof follows by induction on the structure of ϕ; here, we only
sketch the induction step for the most important case, namely ϕ ≡ 〈〈A〉〉Ir γ. We
recall from [21] the semantics of 〈〈A〉〉Ir : let outM(q, s) be the set of paths in M
that can result from execution of strategy s from state q on; then,M, q |= 〈〈A〉〉Ir γ
iff there is s ∈ σA such that for every λ ∈ outM(q, s) we have M, λ |= γ.

“mtl2 ⇒ ATLIr∗”: Let M, q |=mtl2
〈〈A〉〉Aγ. Then, [〈〈A〉〉Aγ]M,q = �,

and so sups∈ΣA
inft∈ΣAgt\A

infλ∈RM†〈s,t〉(q)[γ]M†〈s,t〉,λ = �; let s∗ be a strat-
egy that maximizes the above expression. Note that all the state subformu-
lae of γ will be in fact evaluated in the original mmdp M, so we get that
inft∈ΣAgt\A

infλ∈RM†〈s∗,t〉(q)[γ]M,λ = �. Thus, ∀t∈ΣAgt\A
∀λ∈RM†〈s∗,t〉(q)[γ]M,λ =

�, and by the induction hypothesis we obtain that ∀t∈ΣAgt\A
∀λ∈RM†〈s∗,t〉(q)M, λ

|= ATLIr∗ γ. Now we observe that if s ∈ ΣA is a randomized strategy and �s� ∈ σA

is any determinization of s then RM†〈�s�,t〉(q) ⊆ RM†〈s,t〉(q), so also for �s∗�
we have that ∀t∈ΣAgt\A

∀λ∈RM†〈�s∗	,t〉(q)M, λ |= ATLIr∗ γ. Finally, we take t to
be the uniform randomized strategy of Agt \ A since it does not remove any
paths from the model: RM†〈�s∗�,uniform〉(q) = outM(q, �s∗�). In consequence,
∀λ∈outM(q,�s∗�)M, λ |= ATLIr∗ γ, which concludes this part of the proof.

“ ATLIr∗ ⇐ mtl2”: Let M, q |= ATLIr∗ 〈〈A〉〉Ir γ. Then, ∃s∈σA∀λ∈outM(q,s)M, λ
|= ATLIr∗ γ. We take such s. By induction, ∀λ∈outM(q,s)M, λ |=mtl2

γ. Take any t ∈
ΣAgt\A, then RM†〈s,t〉(q) ⊆ outM(q, s), and hence also ∀λ∈RM†〈s,t〉(q)M, λ |=mtl2

γ. As σA ⊆ ΣA, we finally get that ∃s∈ΣA∀t∈ΣAgt\A
∀λ∈RM†〈s,t〉(q)M, λ |=mtl2

γ. In consequence, sups∈ΣA
inft∈ΣAgt\A

infλ∈RM†〈s,t〉(q)[γ]M†〈s,t〉,λ = �, which
concludes the proof.

Proposition 2. There is a transition system M with states q, q′ which cannot
be distinguished by any formula of ATL∗ nor ATLIr∗, and can be distinguished
by a formula of mtl2.

Proof. Consider the transition system in Figure 2, which can be seen as a con-
current game structure with a single agent (Agt = {1}) and a single action that
can be executed (Act = {α}). Note that states q1, q2 are bisimilar under ctl*
bisimulation, so the same ctl* properties hold in both states (cf. e.g. [22]). Since
the agent cannot make any real choices, both ATL∗ and ATLIr∗ have no more
distinguishing power for this model as ctl*, and hence the same properties of
ATL∗ (resp. ATLIr∗) hold in q1, q2 as well.
3 Recall that ΣA is the set of all (possibly randomized) memoryless strategies of A.

248 W. Jamroga

q1

p= 0

q2

p= 0

q3
p= 0

1.0

0.5
0.5

0.9

0.1

1.0

q4
p=1

Fig. 2. mtl2 vs. ATL∗: probabilities matter!

On the other hand, we have that [〈〈1〉〉Mmp]q1 = 0.5 = [〈〈1〉〉Em0.5p]q1 ,
and [〈〈1〉〉Mmp]q2 = 0.1 = 0.5 = [〈〈1〉〉Em0.5p]q2 . Thus, for ϕ ≡ (〈〈1〉〉Mmp ∼=
〈〈1〉〉Em0.5p), we have q1 |= ϕ and q2 |= ϕ (and even q2 |= ¬ϕ).

The above example shows that a proper notion of bisimulation for Markov de-
cision processes must take into account transition probabilities.

4.3 State-Based Formulae and Bellman Equations

“Atl without star” (or “vanilla atl”) is the most often used variant of alternating-
time temporal logic, mainly due to the complexity of its model checking prob-
lem and the fact that its semantics can be defined entirely in relation to states.
“Vanilla” atl can be seen as a syntactic restriction of atl*, in which every tempo-
ral modality is preceded by exactly one path quantifier. In this section, we consider
a similar syntactic restriction on mtl2; we call it state-based mtl2.

Definition 8. State-based mtl2 (smtl2 in short) is given as follows:

ϑ ::= p | Bool(ϑ) | 〈〈A〉〉ϕ,

ϕ ::= Eγ | Mγ,

γ ::= �
c ϑ | �cϑ | ϑUc ϑ | mcϑ.

Proposition 3 presents fixpoint characterizations for most modalities of smtl2.
Note that the last validity from the list is in fact a modal formulation of Bellman
equation, which is the basic law used in analysis of Markov decision processes.
The other formulae can be seen as variants of the equation for non-standard
analysis based on minimal/maximal rather than average rewards. The results
from [12] suggest that 〈〈A〉〉M�c and 〈〈A〉〉MUc do not have fixpoint characteri-
zations, but this remains to be formally proven.

Proposition 3. The following formulae of smtl2 are valid:

– 〈〈A〉〉E�cϕ ∼= ϕ ∧ 〈〈A〉〉E �
c 〈〈A〉〉E�cϕ;

– 〈〈A〉〉A�cϕ ∼= ϕ ∧ 〈〈A〉〉A �
c 〈〈A〉〉A�cϕ;

Temporal Logic for Stochastic Multi-Agent Systems 249

– 〈〈A〉〉Eϕ1 Uc ϕ2 ∼= ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉E �
c 〈〈A〉〉Eϕ1 Uc ϕ2;

– 〈〈A〉〉Aϕ1 Uc ϕ2 ∼= ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉A �
c 〈〈A〉〉Aϕ1 Uc ϕ2;

– 〈〈A〉〉Emcϕ ∼= ϕ⊕c 〈〈A〉〉E �〈〈A〉〉Emcϕ;
– 〈〈A〉〉Amcϕ ∼= ϕ⊕c 〈〈A〉〉A �〈〈A〉〉Amcϕ;
– 〈〈A〉〉Mmcϕ ∼= ϕ⊕c 〈〈A〉〉M �〈〈A〉〉Mmcϕ.

Proof (sketch). We will sketch the proof of the first validity; the others can be
proved in an analogous way.

Let L = [〈〈A〉〉E�cϕ]M,q and R = [ϕ ∧ 〈〈A〉〉E �
c 〈〈A〉〉E�cϕ]M,q. It is easy

to see that R = min([ϕ]M,q, c · sups∈ΣA
inft∈ΣAgt\A

supq′∈τM†〈s,t〉(q) sups′∈ΣA

inft′∈ΣAgt\A
{[E�cϕ]M†〈s′,t′〉,q′}). Moreover, by [1, Proposition 8], we get that L =

min([ϕ]M,q, c · sups∈ΣA
inft∈ΣAgt\A

supq′∈τM†〈s,t〉(q){[E�cϕ]M†〈s,t〉,q′}). Thus, in
order to prove L = R, it is sufficient to prove that

sups∈ΣA
inft∈ΣAgt\A

supq′∈τM†〈s,t〉(q){[E�cϕ]M†〈s,t〉,q′}
= sups∈ΣA

inft∈ΣAgt\A
supq′∈τM†〈s,t〉(q) sups′∈ΣA

inft′∈ΣAgt\A
{[E�cϕ]M†〈s′,t′〉,q′}.

The difference between the sides of the equation is that in the left hand side
optimal strategies s, t are chosen once (at state q), while in the right hand
side strategies are re-evaluated after each step. Let s∗ be a strategy of A that
optimizes L, and let us take s and s′ in R to be the same as s∗ in L. We
observe that inft∈ΣAgt\A

supq′∈τM†〈s∗,t〉(q){[E�cϕ]M†〈s∗,t〉,q′} is indeed equal to
inft∈ΣAgt\A

supq′∈τM†〈s∗,t〉(q) inft′∈ΣAgt\A
{[E�cϕ]M†〈s∗,t′〉,q′}. Thus, we obtain

that A have at least as good options in R as in L, and hence L ≤ R.
For the other direction, note that s, t in R are only relevant wrt the agents’

actions in state q (later s′, t′ will be used). By unfolding R, we obtain an infinite
sequence of collective action profiles sn(qn), tn(qn) which maximize (over A’s
actions) and minimize (over Agt\A’s actions) the value of E�cϕ in the next step.
Now we observe that, when the system returns to state q, the same strategies
s, t will be again optimal for the respective parties since the same expression will
be maximized/minimized. Thus, the sequence of action profiles can be combined
into a single pair of memoryless strategies s∗, t∗, which maximizes/minimizes
E�cϕ as good as the original sequence of strategies. In consequence, also R ≤ L.

5 Conclusions

We extend the Markov Temporal Logic mtl from [1] to handle Markovian models
with multiple agents acting in parallel. In terms of formal results, we show that
the resulting logic strictly embeds ATLIr∗, i.e., alternating-time temporal logic
with memoryless strategies. We also present fixpoint characterizations for some
natural combinations of strategic, path, and temporal operators, that can be
seen as analogues of Bellman equation. The characterizations enable computing
the truth values of many mtl2 formulae by solving sets of simple equations.

Acknowledgements. The research was partially conducted within the Polish
development project no. O R000024 04.

250 W. Jamroga

References

1. Jamroga, W.: A temporal logic for Markov chains. In: Proceedings of AAMAS
2008, pp. 697–704 (2008)

2. Jamroga, W.: A temporal logic for multi-agent MDP’s. In: Proceedings of Work-
shop on Formal Models and Methods for Multi-Robot Systems, pp. 29–34 (2008)

3. Zadeh, L.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
4. Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28(1), 71–87 (1986)
5. Ruspini, E., Lowrance, J., Strat, T.: Understanding evidential reasoning. Artificial

Intelligence 6(3), 401–424 (1992)
6. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal

Aspects of Computing 6(5), 512–535 (1994)
7. Aziz, A., Singhal, V., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: It usually

works: The temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV 1995.
LNCS, vol. 939. Springer, Heidelberg (1995)

8. Halpern, J.Y.: A logical approach to reasoning about uncertainty: a tutorial. In:
Arrazola, X., Korta, K., Pelletier, F.J. (eds.) Discourse, Interaction, and Commu-
nication, pp. 141–155. Kluwer, Dordrecht (1998)

9. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using
modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)

10. Easterbrook, S., Chechik, M.: A framework for multi-valued reasoning over in-
consistent viewpoints. In: International Conference on Software Engineering, pp.
411–420 (2001)

11. Konikowska, B., Penczek, W.: Model checking for multi-valued computation tree
logic. In: Fitting, M., Orlowska, E. (eds.) Beyond Two: Theory and Applications
of Multiple Valued Logic, pp. 193–210 (2003)

12. de Alfaro, L., Faella, M., Henzinger, T., Majumdar, R., Stoelinga, M.: Model check-
ing discounted temporal properties. Theoretical Computer Science 345, 139–170
(2005)

13. Lluch-Lafuente, A., Montanari, U.: Quantitative µ-calculus and CTL based on
constraint semirings. Electr. Notes Theor. Comput. Sci. 112, 37–59 (2005)

14. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier Science Publishers,
Amsterdam (1990)

15. Markov, A.: Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug
ot druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom univer-
sitete 2(15), 135–156 (1906)

16. Kemeny, J.G., Snell, L.J., Knapp, A.W.: Denumerable Markov Chains. Van Nos-
trand (1966)

17. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time Temporal Logic. Jour-
nal of the ACM 49, 672–713 (2002)

18. Bellman, R.: A Markovian decision process. Journal of Mathematics and Mechan-
ics 6, 679–684 (1957)

19. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
20. Boutilier, C.: Sequential optimality and coordination in multiagent systems. In:

Proceedings of IJCAI, pp. 478–485 (1999)
21. Schobbens, P.Y.: Alternating-time logic with imperfect recall. Electronic Notes in

Theoretical Computer Science 85(2) (2004)
22. Moller, F., Rabinovich, A.: On the expressive power of CTL*. In: Proceedings of

LICS 1999, pp. 360–369 (1999)

Applying the Logic of Multiple-Valued
Argumentation to Social Web: SNS and

Wikipedia

Shusuke Kuribara1, Safia Abbas1, and Hajime Sawamura2

1 Graduate School of Science and Technology, Niigata University
8050, 2-cho, Ikarashi, Nishi-ku, Niigata, Japan
{kuribara,safia}@cs.ie.niigata-u.ac.jp

2 Institute of Science and Technology, Academic Assembly, Niigata University
8050, 2-cho, Ikarashi, Nishi-ku, Niigata, Japan

sawamura@ie.niigata-u.ac.jp

Abstract. The Logic of Multiple-Valued Argumentation (LMA) is an ar-
gumentation framework that allows for argument-based reasoning about
uncertain issues under uncertain knowledge. In this paper, we describe
its applications to Social Web: SNS and Wikipedia. They are said to be
the most influential social Web applications to the present and future
information society. For SNS, we present an agent that judges the regis-
tration approval for Mymixi in mixi in terms of LMA. For Wikipedia, we
focus on the deletion problem of Wikipedia and present agents that ar-
gue about the issue on whether contributed articles should be deleted or
not, analyzing arguments proposed for deletion in terms of LMA. These
attempts reveal that LMA can deal with not only potential applications
but also practical ones such as extensive and contemporary applications.

Keywords: Argumentation, Logic of Multiple-Valued Argumentation,
Social Web, SNS, Wikipedia.

1 Introduction

Social software is reshaping the world we live in. In these days, much attention
has been paid to social Web applications that link people, organizations, and
concepts, instead of linking documents only. To cite a few, MySpace [1] and mixi
[2] in SNS (Social Networking Service), Amazon [3] in information transmission
service, Youtube [4] and Flickr [5] in information sharing service, Wikipedia [6]
in user-originated information providing service.

In this paper, we first focus on SNS that will influence a new form of informa-
tion society and a way of communication. Next we focus on Wikipedia that will
be influential in forming free use of information and sharing mankind’s common
information.

For SNS, we will take up mixi that has the most SNS users in Japan. The
mixi that provides members-only closed network can manage the friend list of
a user by Mymixi that is a function of the mixi. The addition of a user to the

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 251–258, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

252 S. Kuribara, S. Abbas, and H. Sawamura

friend list by Mymixi is performed if the user makes a registration request to
other users concerned by Mymixi and they approve it. The registration request
might be sent by an unacquainted user who can be pernicious. So users are
apt to hesitate to register him or her doubtlessly, even if they have a desire to
communicate with many people equally. Thus a computer-supported method to
advise us if the registration request should be accepted is desirable in such a
dubious environment as faceless Internet.

On the other hand, for Wikipedia we will pay attention to the deletion problem
for articles contributed to it. Although there are official policies and guidelines
that all users who edit an article should follow, there appear users who do not
follow them, and hence articles that should not be published in Wikipedia. To
deal with such a problem, the so-called deletion policy is arranged in advance.
When a user requests to delete articles that conform to the deletion policy by
declaring ”articles for deletion”, the users who feel strongly about the issue
enter into the discussion for deciding if pertinent articles should be deleted or
not. Although there exists a record of argumentation for deletion in the form of
articles, it is just a raw text in natural language, and hence it is a cumbersome
or laborious task for us to analyze the arguments and yield a final status from
those arguments. In Wikipedia, the final judgment seems to be made only by
the administrator for the moment. We think the argument analysis and final
decision should be made in a more open and objective manner.

In this paper, we address ourselves to solving the above problems by in-
corporating Logic of Multiple-valued Argumentation (LMA) [7] into SNS and
Wikipedia. LMA is our own argumentation framework that allows for argument-
based reasoning about uncertain issues under uncertain knowledge, and is
successfully applied to the semantic Web reasoning [8] as well. Significances
of argumentation have been recently recognized and logical models of it have
emerged as a promising paradigm for modeling agent reasoning and communica-
tion in light of interaction with other agents and arguments [9][10][11]. Among
other things, it has such a nature that closely mirrors the way humans reason,
and hence provides us a general framework for inference and decision making in
the presence of inconsistent, uncertain and incomplete information.

This paper is organized as follows. In Section 2, we outline the knowledge
representation language, the Extended Annotated Logic Programming (EALP)
for arguing agents, and the argumentation framework LMA. In Section 3, based
on EALP and LMA, we describe the following three methods for agents: to decide
if the registration requests should be approved or not in Mymixi, to decide
if friends should be deleted or not from Mymixi, and to decide if additional
proposals to Mymixi should be accepted or not. They could help us to live with
a safe and trustworthy SNS, widening a circle of communication. In Section 4, we
present an approach to the deletion problem in Wikipedia, based on EALP and
LMA. Visualizing the process of an argument in a form of tree structure helps
us analyze and understand it. Also for arguments on the deletion whose final
statuses have remained undecided for a long time, our method is expected to

Applying LMA to Social Web: SNS and Wikipedia 253

yield definite answers for them in an objective way. The final section summarizes
the main contributions of this paper, and discusses some future works.

2 Knowledge Representation and Argumentation

In this section, we outline the EALP (Extended Annotated Logic Programming),
and LMA. In Fig.1, ∼ positive(W) :0.7 ← community num(W, X) :1.0& (X < 20) :1.0.

is a rule of EALP form. We read ∼ positive(W) :0.7 that (I wouldn’t rather accept
that W is positive to mixi). In EALP, we use two negataion, ∼ and not . ∼ is
the ontological explicit negation. not is a default negation.

Argumentation is a finitenonempty sequence ofmoves,movei =(Playeri, Argi)
(i ≥ 1) such that

1. Playeri = P (Proponent) iff i is odd; and Playeri = O (Opponent) ⇔ i is even.
2. If Playeri = Playerj = P (i
= j) then Argi
= Argj .

3. Argi+1 defeats Argi.

In this paper, we define and use the following typical attack relations between
two arguments. Justified arguments can be dialectically determined from a set
of arguments by the dialectical proof theory. To facilitate understanding for
justified arguments, we use dialogue tree. The dialogue tree is a tree of moves such
that every branch is a dialogue. If termination of every branch of the dialogue
tree with Arg as its root is a move of proponent, argument Arg is a provably
justified argument.

1. Arg1 rebuts Arg2 ⇔ there exists A : µ1 ∈ concl(Arg1) and ∼ A : µ2 ∈ concl(Arg2) such that
µ1 ≥ µ2, or exists ∼ A :µ1 ∈ concl(Arg1) and A :µ2 ∈ concl(Arg2) such that µ1 ≤ µ2.

2. Arg1 undercuts Arg2 ⇔ there exists A : µ1 ∈ concl(Arg1) and notA : µ2 ∈ assm(Arg2) such
that µ1 ≥ µ2, or exists ∼ A : µ1 ∈ concl(Arg1) and not ∼ A : µ2 ∈ assm(Arg2) such that
µ1 ≤ µ2.

3. Arg1 defeats Arg2 ⇔ Arg1 undercuts Arg2, or Arg1 rebuts Arg2 and Arg2 does not undercut

Arg1.

3 Application to SNS

In this section, we describe three methods for maintaining the friend list of a
user, Mymixi (from now on, we identify Mymixi with a friend list). Then, an
agent’s own evaluation or preference criterion and mixi users’ profiles are to play
a critical role in those three methods. An example of the evaluation criterion in
terms of EALP is shown in Fig.1 as a knowledge base, where the complete lat-
tice of truth-values employed for the example is �[0, 1], a unit interval of reals.
Truth-values represent degree of belief for agents. In the profile specification of
mixi, Fig.1 compares one user’s profile with the user agent’s one, from which
the agent can design an annotation for the literal correspond hobby(W), for ex-
ample. The agent could assign to the literal an annotation of high degree if it
corresponds with the specific hobby, or if they share many hobby with the agent.
If birth place is the same in the both sides, it might sets 1.0 as an annotation to
the literals same born place(W). For the literal update interval(W) expressing

254 S. Kuribara, S. Abbas, and H. Sawamura

register(W):0.8 correspond_hobby(W):0.8&comment(W):0.7.
 (If my hobby corresponds with W and W comments on my diary,
 I’ ll register W on My mixi.)
correspond_hobby(W):0.8 hobby(W, music):1.0.
 (If W’s hobby is listening to music, I correspond with W.)
comment(W):0.7 my_mixi(W, X):1.0&(X < 70):1.0.
 (If the numbers of friends on W’s Mymixi is less than seventy,
 W’ll comment on me.)
register(W):0.6 same_birth_place(W):1.0.
 (If W’s birth place is the same as mine, I’ll register him on W on Mymixi.)
~ comment(W):0.5 ~positive(W):0.7.
 (If it’s not true that W is positive to mixi arguably, W doesn’t comment.)
~ positive(W):0.7 community_num(W, X):1.0&(X < 20):1.0.
 (If W’s number of community is less than 20, W isn’t positive.)
positive(W):0.7 update_interval(W):1.0.
 (If W’s frequency of the diary update is high, W is positive to mixi.)

Fig. 1. Knowledge base in EALP

name age gender hometown hobby frequency Mymixi community
 of update

Kenji 38 male tokyo music high 35 8

user 23 male niigata music low 22 76

Fig. 2. Profile

KB1 = { delete(page_r) : t
 quotation_requirement(page_r) : f . }
(Delete) Insufficient quatation requirement
KB2 = { ~ delete(page_r) : t
 quotation_requirement(page_r) : t . }
(Continue) Sufficient quotation requirement
KB3 = { delete(page_r) : t
 quotation_requirement(page_r) : f . }
(Delete) No quotation written
KB4 = { ~ delete(page_r) : t
 abuse_of_delete_request(page_r) : t . }
(Continue) Abuse of delete request

Fig. 3. Four Agents’ KB

Fig. 4. Mymixi registration judgement
framework

 register(kenji):0.8

 comment(kenji):0.7

 hobby(kenji, music):1.0 my_mixi(kenji, 35):1.0 (35 < 70):1.0

 ~comment(kenji):0.5

 ~positive(kenji):0.7

 community_number(kenji, 8):1.0 (8 < 20):1.0.

 positive(kenji):0.7

 update_interval(kenji):1.0

correspond _hobby(kenji):0.8

Fig. 5. Dialogue tree about Kenji

the update frequency of the diary in mixi, the agent figures the update frequency
from the dates of the diary, and determines the annotation for the literal from it.
For example, if a user (requester) updates the diary once in every month, the up-
date frequency may be viewed high, and the annotation of update interval(W)
would be 1.0. If a user (requester) updates every other month, the annotation of
update interval(W) 0.5. In such a manner, associating annotations with literals
was automated in our agent system for Mymixi management.

3.1 Examining the Registration Requests to Mymixi

We assume that the agent has the argument engine (LMA). Then, the registra-
tion requests to Mymixi are examined in the following steps. The overall Mymixi
registration judgement framework is depicted in Fig. 4

Step 1. We prepare as a part of knowledge base an evaluation criterion E that repre-
sents our preference for judgement in EALP, and leave it with our agent.

Step 2. When receiving a registration request from a requester, the agent accesses the
profile page of the requester, and extracts information needful for the registration
determination from it, and construct a set of rules of the form of EALP F .

Step 3. The agent finally builds a knowledge base KB that unites F with the agent’s
evaluation criterion E . With it, the agent starts argumentation on the issue whether
to add the requester to Mymixi or not.

Applying LMA to Social Web: SNS and Wikipedia 255

Step 4. The agent reports a result of judgement on the basis of the result of the
argumentation to his/her master. The agent recommends to register the requester
W on Mymixi to his/her master if the issue of the form register(W) :µ is justified.
Otherwise, the agent does not recommend it.

Assume that we have received the registration request on our Mymixi from
Kenji, and prepared a knowledge base KB in Fig.1 to which the agent’s evalu-
ation criterion and their profile information have been united. A result of the
argumentation about Kenji based on the dialectical proof theory is shown in a
dialogue tree in Fig. 5, where each argument is enclosed by a frame, and the
defeat relation among arguments are drawn by arrows. The argument whose
conclusion is register(Kenji) :0.8 is justified since every leaf on the paths in the
dialogue tree is the proponent’s move. Consequently, the agent recommends to
register Kenji on Mymixi.

3.2 Examining the Deletion of Friends from Mymixi

Everything changes over time. Our evaluation criterion and profile information
are not exceptional. When the evaluation criterion and profile information of the
agent have changed, the agent rebuild a new KB. For instance, for the update
frequency of the diary and the change of the affiliation number to communities,
the agent should examine every month for keeping our decision-making trust-
worthy. Then, the agent starts argumentation using the revised KB as done in
Section 3.1. If an argument whose conclusion is register(W) :µ is not justified,
the agent recommends to delete W from Mymixi. We assume that the agent
adds such a new evaluation criterion as ∼ register(W) : 0.6 ← info(W, , , Age) :
1.0 & (Age > 30) : 1.0. (if W is older than 30, the agent doesn’t register W on
Mymixi.) to the evaluation criterion of Fig.1. Reexamining Kenji with the new
KB, the dialogue tree about Kenji becomes one as in Fig. 3.3. The argument
whose conclusion is register(Kenji) : 0.8 fails to be justified as the leaf on the
right path of the dialogue tree is not a proponent’ move. Therefore, the agent
recommends to delete Kenji from Mymixi.

It is noted that we face an issue similar to belief revision since the deletion is
considered as a revision of knowledge base. But what we have dealt with here
amounts to its simplest form of belief revision in the sense that preexisting rules
are not deleted from the knowledge base. Nevertheless, the previous decision
has supplanted the new one, revealing a non-monotonic inference in terms of
argumentation.

3.3 Approving Additional Proposal to Mymixi

The previous two subsections have been concerned with refining Mymixi in one
way or another. In this subsection, we consider a framework to enhance or enrich
Mymixi by exploring it more positively. The framework for proposals for adding
relevant people to Mymixi is shown in Fig. 6. It starts by our indicating the
agent so that it searches Mymixi and constructs a list for candidates who are
entitled to be added to Mymixi on the basis of the upper limit of the number of

256 S. Kuribara, S. Abbas, and H. Sawamura

Fig. 6. Framework of additional proposal

 register(kenji):0.8

 comment(kenji):0.7

 hobby(kenji, music):1.0 my_mixi(kenji, 35):1.0 (35 < 70):1.0

 ~comment(kenji):0.5

 ~positive(kenji):0.7

community_number(kenji, 8):1.0 (8 < 20):1.0

 positive(kenji):0.7

 update_interval(kenji):1.0

correspond_hobby(kenji):0.8

 ~regist(kenji):0.6

info(kenji,_,_,38):1.0 (38 > 30):1.0

Fig. 7. Dialogue tree of reexamination
about Kenji

people that we can accept. The agent examines it by the argumentation method
that we provided in Section 3.1 for each candidate in the list. The agent recom-
mends to add to Mymixi for such a member W of the list that the argument on
register(W) :µ is justified. The search space is confined itself with Mymixi. But,
introducing some mining techniques for arguments to this framework could lead
to more fruitful search results [12].

4 Application to Wikipedia

In this section, we describe an application of LMA to Wikipedia. If a user re-
quests to delete an article which conforms to the deletion policy of Wikipedia
[6], any user can participate in the argument on whether the article should be
deleted or not. The argument is done by voting on the deletion either of delete,
continue or suspend together with the reason for it. Users also can put forward
comments without voting. Here is a summary for them.

(Delete) Users ballot for deletion, and present reasons why the article should
be deleted.

(Continue) Users ballot for continue, and present reasons why the article should
be continued.

(Suspend) Users ballot for suspension, and describes a reason why the user
can not make a judgement of deletion nor continuation.

(Comment) Users do not ballot for any alternatives above, but present com-
ments only.

In this way, users’ opinions on the deletion are usually put forward, but some-
times counter-arguments to Delete and Continue are put forward in Comment as
well, making it difficult for us to understand a logical structure of the argument
at first sight. Administrators in Wikipedia are now entitled to make a final judge-
ment on the matter whether to delete or not as a result of the argumentation,
and in fact reach a decision by majority vote for Delete and Continue. But, there
is no guarantee that the judgement has been held by a logical argumentation.

In order to support to analyze arguments on the deletion issues in a more
logical and objective manner, we propose such a method that agents can resolve
the deletion issues by argumentation in LMA with a record of the raw arguments

Applying LMA to Social Web: SNS and Wikipedia 257

Fig. 8. Framework of deletion judgement Fig. 9. Dialogue tree about ”three laws of
robotics”

converted to EALP. As the truth value for this application, we use the well-known
complete lattice of the four values FOUR = ({t, f, �, ⊥}, ≤), ∀x, y ∈ {t, f, �, ⊥}x ≤
y ⇔ x = y ∨ x = ⊥ ∨ y = �. The t and f mean the alethic states of true and
false respectively as in classical logic, and the � and ⊥ mean contradictory
and undecided states respectively. The alternative Suspend corresponds to the
state/truth value ⊥.

Fig. 8 illustrates a framework for deciding the deletion issues by the agents’ argu-
mentation. The agents haveLMA as an argument engine as in the previous section.
First of all, a user converts raw texts in the argumentationpage for the deletion into
EALP, and gives it to the agents. Then, assuming that the page P is requested for
deletion, the agents start argumentation regarding the literal delete(P) : µ as an
issue. If the argument on delete(P) :t is justified, the agents judge that the page P
should be deleted. Otherwise, they judge that it should be continued.

Let us take up a page on ”three laws of robotics” which was requested for
deletion in the past years and had been concluded that the page should be
continued. First of all, the agents convert a text in the page into EALP. In the
converted information (rules and arguments), the rules which especially relate to
the argumentation is shown in table 3. We consider four agents {KB1, · · · , KB4}
since there were 4 people who substantially got involved in the argumentation.
Fig. 9 displays the dialogue tree for judging ”three laws of robotics” in which
every leaves in it are not proponents’ moves. From this, the agents turn out to
such a judgement that ”three laws of robotics” should be continued.

5 Conclusion and Future Work

In this paper, we proposed to apply the argumentation approach by means of
the logic of multiple-valued argumentation (LMA) to two social Web applica-
tions: SNS and Wikipedia. Wherein, we have found the four approval issues in
Mymixi and the deletion issue in Wikipedia most relevant to be resolved by
argumentation from the nature of those issues, and provided the effective meth-
ods drawing on the power of argumentation for resolving them. We think that
such reinforcement of SNS and Wikipedia with those augmentation is useful and
helpful for users since they are now rapidly influencing our society as a new
infrastructure for communication, information-sharing, decision-making, etc. in
the next generation of information society.

258 S. Kuribara, S. Abbas, and H. Sawamura

There, however, are some important works left as future work. The agent in
mixi was assumed to behave credulously in the sense that it believes user’s pro-
files given are always true. It is usual that there exist users who are apt to fake
their own profiles in such a dubious environment as faceless Internet. We need
to take into account a somewhat careful or skeptical way to scrutinize profiles
with the help of introductory essays on users, reputation in the community in
which users participate, an so on. Work on trust and reputation are fortunately
promoted in agent-oriented computing as well. On the other hand, a big bottle-
neck in the application of LMA to Wikipedia is that we assumed that the raw
materials of arguments in natural language have to be represented in EALP by
humans in this paper. We have had two preliminary approaches to overcome it.
One is a promising work on transforming natural arguments in argument map-
ping systems to formal arguments in LMA [13]. The other is to construct and
transform arguments by use of the argument mining from relational argument
database [12]. Recent developments on Semantic Web technology [8] and Argu-
ment Interchange Format (AIF) [14] also turn out to be closely related to our
present work, but the details of the tie-up will be left as a future work.

References

1. My Space! Japan, http://jp.myspace.com/
2. Mixi, http://mixi.jp/
3. Amazon! Japan, http://www.amazon.co.jp/
4. Youtube, http://www.youtube.com/
5. Flickr, http://www.flickr.com/
6. Wikipedia, http://ja.wikipedia.org/wiki/
7. Takahashi, T., Sawamura, H.: A logic of multiple-valued argumentation. In: Pro-

ceedings of the third international joint conference on Autonomous Agents and
Multi Agent Systems (AAMAS 2004), pp. 800–807. ACM, New York (2004)

8. Sawamura, H., Wakaki, T., Nitta, K.: The logic of multiple-valued argumentation
and its applications to web technology. In: Dunne, P.E., Bench-Capon, T.J.M. (eds.)
Computational Models of Argument, pp. 291–296. IOS Press, Amsterdam (2006)

9. Chesñevar, C.I., Maguitman, G., Loui, R.P.: Logical models of argument. ACM
Computing Surveys 32, 337–383 (2000)

10. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Gab-
bay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, pp. 219–318. Kluwer,
Dordrecht (2002)

11. Reed, C., Norman, T.J. (eds.): Argumentation Machines. Kluwer Academic Pub-
lishers, Dordrecht (2004)

12. Abbas, S., Sawamura, H.: Towards argument mining from relational argument
database. In: Proc. of the 2nd Int. Workshop on Juris-Informatics (JURISIN 2008)
Workshop, pp. 22–31 (2008)

13. Takahashi, Y., Sawamura, H., Zhang, J.: Transforming natural arguments in arau-
caria to formal arguments in lma. In: Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, pp. 668–678. IEEE Com-
puter Society, Los Alamitos (2006)

14. Chesñevar, C.I., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South,
M., Vreeswijk, G., Willmott, S.: Towards an argument interchange format. The
Knowledge Engineering Review 21, 293–316 (2006)

http://jp.myspace.com/
http://mixi.jp/
http://www.amazon.co.jp/
http://www.youtube.com/
http://ja.wikipedia.org/wiki/

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 259–266, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Simulation of Halal Food Supply Chain with Certification
System: A Multi-Agent System Approach

YiHua Lam and Saadat M. Alhashmi

School of Information Technology, Sunway Campus, Monash University,
Bandar Sunway, 46150, Petaling Jaya, Malaysia

{Lam.yek.Wah,Saadat.M.Alhashmi}@infotech.monash.edu.my

Abstract. Certification of Halal food product supply becomes a challenging
task as various validating procedures have to be undergone under the emergence
of vast business networks in food supply chain. In order to maintain high qual-
ity assurance of every validating procedure, and to fulfill demand from im-
mense religious population, highly efficient method will be needed to monitor,
to record and to register, to decide and to certify every actor (agent) and every
product in the supply chain. With the multi-agent architecture this research
work simulates the Halal food supply chain planning with certification system,
which attempts to replicate the actual market place coupled with Halal food
quality requirement. Statistical study of the decision making of various agents
in the supply chain and the response of certification system will verify the fea-
sibility of the certification framework in supply chain.

Keywords: Multi-agent, Halal food, supply chain, certification process.

1 Introduction

Post-modern view of food quality is emerging from the factors of culture, environ-
mental and ethical values, biological values, sensual and nutritional values, functional
values and authenticity [1, 2, 3]. However, the understanding of specifically imposed
values in food quality is not new in Islamic culture. Food permitted by Islamic dietary
law is called as Halal food (permitted food). Products certified as Halal are products
that not only abide by the religion aspect but include hygiene, sanitation and safety
qualities [4] which are important quality aspects of food. The consumers of Halal
products include Muslims and non-Muslims that hail from many countries such as
Asian countries, Middle East countries, America, Canada, United Kingdom, Africa
and Europe. As quality is associated with the Halal standard, it is of utmost impor-
tance that the products and meat sold are genuinely Halal, but many times it has been
found that this is not the case in many countries [5, 6, 7, 8, 9, 10, 11, 12]. For in-
stance, manufacturers and distribution outlets such as food sellers are using fake Halal
certificates or labels on products and meat [8, 10, 11] there is cross contamination in
the production of Halal and non-Halal food at the manufacturers [7, 9, 13], animals
are not slaughtered ritually [7, 13], there is clumsy slaughtering of animals with dull
knives [12] which is not only cruel but is considered not Halal under the
MS1500:2004 standard [11] which adheres to the Shariah law (Islamic law) and has

260 Y. Lam and S.M. Alhashmi

been accepted by the United Nations, and animals are starved before the slaughtering
according to slaughterhouse officials [14] as well as cruelly transported by traders
such as from the supplier to the abattoir [12, 14] which is cruel and therefore not
Halal as quoted by the late B.A. Hafiz al-Masri, Imam of the Shah Jehan Mosque in
the United Kingdom [12] who has contributed that ‘animals subjected to cruelties in
their breeding, transport, slaughter, or in general welfare, meat from them is consid-
ered impure’, in other words not Halal. This has caused the consumers of Halal prod-
ucts especially the Muslim consumers to be concerned about the quality of the Halal
food and products that they consume and use on a daily basis.

Today authorized Muslim certification organizations have been set up in many
countries to monitor and to inspect the abattoirs, manufacturers and distribution out-
lets in their handling of the animals and Halal products, and to issue the Halal certifi-
cates to them once the inspections are approved. These certification organizations
have been successful to a certain extent in reducing the quality problem associated
with the Halal products, but there is room for improvement. Currently, these organiza-
tions are carrying out their inspections manually and there are certification organiza-
tions that require companies to manually submit the Halal application to their offices
and liaise with third party organizations/labs to test the Halal products, which delay
the Halal certification process and ultimately delay the genuine Halal products from
reaching the consumers’ hands quickly. Procedural delays can cause all sorts of issues
not just with consumers but along the supply chain as well. This paper proposes a
multi-agent based approach to improve the Halal supply chain in general and the
certification process in particular.

With the advancement of Multi-Agent System (MAS), we can verify and study the
proposed Halal certification system framework by constructing a multi-agent envi-
ronment on Repast [15] platform to replicate the real market space coexisting with
authorized Muslim certification organization. In addition, this paper statistically
presents the feasibility of a tested Halal certification framework to counter the proce-
dural hindrances in certifying Halal products in food supply chain. A "pseudo-
synchronous" method, which manipulates the shuffling technique, is implemented to
imitate the concurrent decision-making process of every participating agent. This
decision-making could be in the form of information retrieval, finding the best deal
from various offered bids, procuring livestock supply and registering Halal food data.
In our view, a multi autonomous agent environment must possess the autonomy and
intelligence in decision-making. Hence, based on previous occurrences, current situa-
tion and its own interest, every agent has control over its internal state and actions. An
autonomous agent, which possesses intelligent behavior, will execute the assigned
tasks on its own for the achievement of predefined goals. Therefore, actions will be
different among agents, which may be either the same type agent or different type
agent. This individual decision maker will complicate the simulated food supply chain
with Halal certification system. Moreover, technology can be great enabler especially
when it comes to routine food quality inspection. By considering such advancement
this paper puts forward a multi-agent based simulated framework for testing the Halal
certification system in food supply chain.

 Simulation of Halal Food Supply Chain with Certification System 261

$

$

Fig. 1. Multi-agent environment overview

2 The Simulated Halal Food Supply with Certification System
Model Space

Our focus is on replicating the basic real world problem by mapping it onto MAS
simulation. The simulated Halal food supply chain with Halal certification system
will demonstrate (1) complex interaction of various agents in Halal food supply chain,
the reactions of agents with Certification Organization Agent (Cert. Org. Agent) and
food business network; (2) feasibility of the certification information flow (3) statisti-
cal studies of certification efficiency; and (4) pseudo-synchronous interactions among
multiple actors that require independent decision-making capability. Every agent is
capable to "concurrently" make decisions at run time. Thus, the simulated Halal food
supply with certification system will have to be pseudo-synchronous by using shuf-
fling method with randomly selected sequence. By using shuffling technique, the
sequence of interaction, Supplier/Breeder Agent→Abattoir Agent→Manufacturer
Agent→Distribution Outlet can be shuffled according to random number. That means
the sequence can be led by either a Supplier/Breeder Agent, or an Abattoir Agent, or a
Manufacturer Agent, or a Distribution Outlet in every time step of Repast. However,
Cert. Org. Agent cannot lead any sequence.

262 Y. Lam and S.M. Alhashmi

Every agent is able to perform independent actions on behalf of its own, and work
out how to achieve its design objectives, autonomously and dynamically, because
every agent is dealing with current situation and individual data. Every agent in the
Halal supply chain system replicates basic functions of the real world. The different
actors that have been identified in this framework are categorized in two groups, i.e.
the group of Supply Chain Organizations, which includes Supplier Agent or Breeder
Agent, Abattoir Agent, Manufacturer Agent and Distribution Outlets; and the group
of Cert. Org. Agent (and System Registry).

Every agent will autonomously perform in this system. For instance, the Abattoir
Agent replicates the basic action of butcher. It will procure livestock from Sup-
plier/Breeder Agents, who supply/breed the livestock, select, slaughter and sell them
to Manufacturer Agents or Distribution Outlets. Each Representative (interface) of
Cert. Org. Agent residing in Abattoir Agents will select/justify Halal and non-Halal
livestock before they will be slaughtered by Abattoir Agent. The selected and slaugh-
tered livestock will be labeled as Halal by the Representative as well. Once the
slaughtered Halal livestock is sent to buyer, Abattoir Agent will submit slaughtered
Halal livestock data to Cert. Org. Agent. An Abattoir Agent may sell slaughtered
Halal livestock to a Manufacturer Agent or a Distribution Outlet. If a Manufacturer
Agent purchases the slaughtered Halal livestock from an Abattoir Agent, it processes
and butchers the slaughtered Halal livestock into pieces of meat. Again, a Representa-
tive of Cert. Org. Agent residing in that Manufacturer Agent will label every proc-
essed meat before it will be sold to a Distribution Outlet which may be a Food
Retailer, or a Butcher or a Hypermarket. Information of processed Halal meat from
Manufacturer Agent will be sent to Cert. Org. Agent as well via a Representative. As
basically, there are three types of Distribution Outlet, hence different type of Distribu-
tion Outlet will have different rate of selling Halal food. For instance, Food Retailer
will have higher rate to sell processed Halal meat compared to Butcher, whereas
Butcher will have higher rate to sell slaughtered Halal livestock compared to Food
Retailer. However, Hypermarket will have an almost balanced Halal food selling rate.

The flow of financial point (money) is from Distribution Outlet to Supplier Agent
via Manufacturer Agent and Abattoir Agent. That means Distribution Outlet will sell
Halal food and generate money. When a Distribution Outlet purchases processed
Halal meat from a Manufacturer Agent or buys slaughtered Halal livestock from an
Abattoir Agent, it will pass money to either one of them. Money will flow from
Manufacturer Agent to Abattoir Agent when trading occurs. Finally, Supplier Agent
will accumulate money from Abattoir Agents and use money to generate livestock.
Contrary, the flow of livestock is from Supplier Agent to Distribution Outlet. Fur-
thermore, two types of Halal food data, i.e. slaughtered Halal livestock and processed
Halal meat, will be kept in Cert. Org. Agent database. The slaughtered Halal livestock
data kept in Cert. Org. Agent will only be cleared if the slaughtered Halal livestock
has been processed by Manufacturer Agents or it has been sold at Distribution Out-
lets. The processed Halal meat data will only be cleared from Cert. Org. Agent data-
base if it has been sold at Distribution Outlet.

In addition, the simulated livestock market involves Supplier/Breeder Agents and
Abattoir Agents. That means, after breeding livestock, the Supplier Agent not only
trade livestock with Abattoir Agent, but it may also trade with other Supplier Agents
as well. The higher the offered bid given by an agent, the higher the probability an

 Simulation of Halal Food Supply Chain with Certification System 263

agent will get the livestock. The same business network will happen when an Abattoir
Agent opens its sale to Manufacturer Agents and Distribution Outlets. Moreover,
every agent will tend to sustain its lifespan by continuously purchasing and selling to
generate more money. It will become idle when it has low amount of money, and it
will be erased from the Halal food supply chain model space when its life is expired.
Agents will tend to lift up the offer to outbid other agents in order to succeed in food
market. The objective of constructing such “trading” is to complicate the food supply
business network. Therefore, every agent will be lively to trade around in the Halal
food market. Furthermore, once an agent is added to the Halal food supply chain, it
will receive a certain period of permit (e.g. 50 time step) from Cert. Org. Agent. Ran-
dom examination of Halal food will be carried out by Cert. Org. Agent.

3 Results

The model space of Halal food supply chain with Certification System Agent is de-
picted in Fig. 2. Every symbol is labeled and numbered accordingly with the type of
agent and an index number.

Fig. 2. Distribution of livestock received by
Abattoir Agent 0 from Supplier Agent 1

Fig. 3. Distribution of Halal livestock re-
ceived by Abattoir Agent 0 from Supplier
Agent 1

Fig. 2 shows interactions happen among the same type agents (Supplier Agent
interacts with Supplier Agent) and different type agents (e.g. Abattoir Agent inter-
acts with Manufacturer Agent or Distribution Outlet and Cert. Org. Agent) within
one time step. Such interactions occur randomly and strategically under autonomous
decision-making process of agents with probabilistic consideration as described in

264 Y. Lam and S.M. Alhashmi

section 2. Red links represent trading interaction; whereas blue and cyan links depict
passing/sending of slaughtered Halal livestock information and processed Halal meat
information to Cert. Org. Agent; in addition, orange links portray clearings of Halal
food data at Certification Organization database which are requested by Distribution
Outlets. Besides, Fig. 2 shows various types of agent lively participate in the Halal
food supply business network within one time step. This complication of network
replicates the basic actual Halal food supply chainFig. 3 shows a livestock distribution
delivered by Supplier Agent to Abattoir Agent in one time step. In this paper, weight
of livestock is assumed and used as the deciding factor to justify whether the livestock
is Halal or non Halal. The distribution is recorded by Abattoir Agent once it has re-
ceived livestock supply from Supplier Agent. After receiving livestock, Abattoir
Agent assumes the Halal requirement of livestock weight is above or is the same as
1.5 weight unit. Obviously, Fig. 3 shows the livestock recorded by Abattoir Agent is
in accord with Gaussian distribution and the distribution reproduces what has been
generated by Supplier Agent with standard deviation 0.5, mean value 2.0 Fig. 4 sig-
nificantly shows the selected livestock distribution at Abattoir Agent is above 1.5
weight unit.

Fig. 4. Halal food supply chain with Certification System Agent

4 Conclusion and Discussion

As stated in the introduction, the vast religious population of Islamic culture, who
impose high requirement on food, demands the need to have a high efficiency and fast
network base food certification system. However, before the real implementation of
network base food certification system, Halal food supply chain planning with Certi-
fication System can be tested in a MAS environment. For instance, the color links of
transferring Halal data in Fig. 2 may represent connections of e-business (ebXML)
[16, 17] or RosettaNet [18]. The system, from a system-design perspective, shows
evidence of a flexible design. What this means is that it possesses the elements of scal-
ing up, functioning in a distributed environment, and above all, autonomy. This puts
forward a framework where multi-agents can replicate the basic actual environment

 Simulation of Halal Food Supply Chain with Certification System 265

and test the feasibility of a certification system on top of a food supply chain. The
MAS model space has tested with five types of agent. Definitely, a larger number of
agents either the same type or different type or combination of various types (e.g.
contemporary hypermarket which consists of food retailer and abattoir) will probably
increase the similarity with actual environment and reliability of the simulation,
meanwhile augment the complexity of the virtual food business network. On the other
hand, having a fewer number of agents will probably not bring out the advantages of a
multi-agent approach, and the system could end up not achieving the main purpose as
it was intended to. The focus of this MAS system development was on designing a
generic and robust system. In the real world, the actual process of implementation
depends on external variables such as market trend, behavioral, ethical, economical
and social factors. However, this MAS system only considered the technical aspects,
and at least this would pave the way by providing a framework where the above men-
tioned variables can be considered and explored for testing the real world application.
This research will be undertaken to improve decision-making in certifying food sup-
ply under behavioral economic consideration and consumer trend. Evaluation in the
real world also depends on other external factors such as: legislation, economic con-
straints, social and ethical aspects, for example. Nevertheless, the developed system
will provide a framework in which these issues and problems of Halal food supply
chain with certification system can be identified and articulated more easily.

References

1. Eastham, J.F., Sharples, L., Ball, S.D.: Food Supply Chain Management: Issues for the
Hospitality and Retail Sectors, Butterworth-Heinemann, p. 22 (2001)

2. Woodward, L., Stolton, S., Dudley, N. (eds.): Food Quality: Concepts and Methodologies.
In: Proc. Colloquium Elm Farm Research Center, Newbury, UK (1989)

3. Woodward, L., Meier-Ploeger, A.: Consumer Perceptions of Organic Food Quality. In:
IFOAM Conf., Mal Del Plata, Argentina (1998)

4. SIRIM, http://www.sirim.my/f_corp/july04.pdf
5. American Communications Foundation,

http://www.acfnewsource.org/religion/Halal.html
6. Halal Journal, http://www.Halaljournal.com/artman/publish_php/

article_1036.php
7. Halal Monitoring Authority,

http://hma.jucanada.org/industry_problems.aspx
8. Halal Monitoring Committee,

http://www.Halalmc.co.uk/about_hmc/need_monitoring.html
9. Islamic Food and Nutrition Council of America,

http://ifanca.org/newsletter/2002_05.htm
10. Islamic Religious Council Singapore, http://www.muis.gov.sg/webpub/

warita/warita3-2000/page22.html
11. JAKIM, http://www.islam.gov.my/portal/lihat.php?jakim=2140
12. PETA, http://www.petaindia.com/600morator.html
13. Halal Monitoring Committee,

http://www.Halalmc.co.uk/about_hmc/industry_problems.html

266 Y. Lam and S.M. Alhashmi

14. People of the Ethical Treatment of Animals, http://www.petaindia.com/
dreport2.html

15. North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations of the
Repast Agent Modeling Toolkit. ACM Transactions on Modeling and Computer Simula-
tion 16(1), 1–25 (2006)

16. ebXML (2001a), http://www.ebxml.org/specs/ebTA.pdf
17. ebXML (2001b), http://www.ebxml.org/specdrafts/ebbpss_v1.0.pdf
18. Rosetta Net, http://www.rosettanet.org

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 267–274, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Novel Approach for Conflict Resolution in
Context-Awareness Using Semantic Unification of

Multi-Cognition*

Keonsoo Lee1 and Minkoo Kim2

1 Graduate School of Information and Communication, Ajou University,
Suwon, Kyonggido 442-749, Republic of Korea

lks7256@ajou.ac.kr
2 College of Information & Computer Engineering, Ajou University,

Suwon, Kyonggido 442-749, Republic of Korea
minkoo@ajou.ac.kr

Abstract. The context helps service providers to perform their works properly
even if the user’s request has implicit meanings. The context of service can be
viewed as the situation of the environment which is related to the service’s exe-
cution. In order to provide such autonomous and intelligent service, the
provider needs to be aware of the context by sensing the environment. In this
sensing process, the conflicts can happen. One of the origins of these conflicts
is the discord of the sensing data’s meaning that is used for recognizing the con-
text by different providers. This difference can cause the conflict in providing
services such as keeping the music or keeping the serenity of the space. In this
paper, we propose a conflict resolution method by unifying these semantic dis-
cards of sensed data. This unified meaning can keep the multiple services from
recognizing the environment differently.

1 Introduction

In origin, the ubiquitous computing promises the limitless access to any networks. But
these days, more than this feature are expected for this novel computing environment.
More autonomous and more intelligent service is the expected one. This service needs
to perform according to the dynamically changed environment. This intelligent re-
sponse to the environment means that the service knows when to ignite itself and
when to stop. At the same time, the same service can execute differently according to
the situation where it performed. In ubiquitous computing environment, this service
works according to the dynamically changed situation of restaurant without the cus-
tomers or manager’s explicit request. This performance can be called autonomous and
intelligent [1]. As the computing system gets to be more complex, it gets to be more
difficult for user to operate the system. With this amateurism of the users for the

* This research is supported by Foundation of ubiquitous computing and networking (UCN)

Project, the Ministry of Knowledge Economy (MKE) 21st Century Frontier R&D Program in
Korea and a result of subproject UCN 08B3-S2-10M.

268 K. Lee and M. Kim

computational system, the system should have knowledge for understanding the
user’s ambiguous command. A context works as the knowledge for the service’s intel-
ligent performance. By using the context, the execution of a specific service can be
controlled delicately to satisfy the user even if the request of that user has some omit-
ted details, implicitly hidden desires, and ambiguousness. The context can be used as
one of the most important foundations in the determination of services and their exe-
cuting conditions.

One of the most important admonishments in using a context is the possibility of
conflicts. In ubiquitous computing environment, where various users exist and their
desires are entangled with others, the mutually exclusive services can be fired by the
same context. The temperature of 25°C can be a factor of the context for not only the
service of using an air-conditioner but also the service of using a heater. This dis-
agreement for the meaning of context results the conflict and it prevents the service
from satisfying the requesters. In order to resolve these conflicts, we propose a se-
mantic unification method that coordinates the meaning of the context recognized by
different services.

2 Background

2.1 Context-Awareness

Becoming aware of the context can cause some advantages not only in ubiquitous com-
puting environment but also in other domains. In the lexical meaning, contexts help to
extract the correct meaning of the concept from the paragraph. In this case, the tone,
pitch, volume, and face can tell the intended meaning. The same situation happens in
computing areas especially ubiquitous computing where the various services and multi-
ple users exist. In such case, the context information can be usefully employed to pro-
vide the proper service by eliminating the ambiguity of services’ execution condition
(pre-condition). The general system model that responds to the environment employs
these process. A service provider senses the environment. From the sensed information,
he/she can recognize the situation and decide whether the service is proper to the situa-
tion or not. If the situation matches the execution condition of the service, the service is
viewed as proper service and it is executed. In this process, the context works as yard-
sticks for matching the situation and service’s execution condition.

2.2 Context, Service and Conflict

Every service needs to use contexts for suitable execution in given environment. The
information for a specific service’s context is different from that of other services. As
the Fig 1 shows, the physical environment is viewed as a model consists of the exist-
ing computational objects. The snapshot of the model at a specific time t is called the
situation of the environment at time t. As the time passes, the situation is changed and
the model represents the environment [2]. In this situation model, the context can be
seen as the subset of situation. As mentioned before, for a temperature control service,
the brightness sensing information is not necessary. Therefore, the context of a ser-
vice is a part of the situation which consists of the states of computing objects that the
service concerns.

 A Novel Approach for Conflict Resolution in Context-Awareness 269

Fig. 1. Contexts from Situation

A service is an activity with an identified goal. The goal is a desired state of the
current environment. Therefore, we can define the service as a set of actions for
changing the current environment to the desired state. In order to use context for pro-
viding services, the service provider should know which information is necessary.
This information is charged by the service provider. When new service is registered,
its context frame should be included even if the necessary information is not able to
be gathered in given situation. Fig 2 shows the description frame of a service defini-
tion. It consists of execution condition, context information (set of necessary sensing
targets), post-condition (the desired change to the situation), and action flow.

The condition of
when the service
can be provided

and executed

Necessary Device
and its usage
sequence

Change of
Situation resulted
by this service
execution

State of Object
1. Object 1
2. Object 2
...

Execution Condition Context Frame Post Condition Action Flow

Fig. 2. Description frame of a service definition

In the process of providing services with their proper contexts, conflicts can occur.
The conflict is a situation where more than two services, which cannot coexist, are
tried to execute at the same time. In order to execute several services parallel, each
service’s goal state and employed device should not be overlapped. Let me assume
two services. One service tries to show a movie. The other service tries to show a
soap opera. These two services’ goal state is same. Both of them want to change audio
of the environment more entertaining. However, when there is only one device such
as television, which is employed for archiving the desired services, the conflict oc-
curs. The dependency between service and the environment, between service and its
employing devices causes the conflict.

In order to resolve such conflicts, there are two different approaches. One is the
resolution at the service execution time. The other is the prevention at the service
selection time [3]. Most widely employed resolution method is using priority at the
service execution time. When a conflict occurs, more important service, which has a
higher priority, performs ahead. The determination of each service’s priory is the key
point of relevant result. In this method, new plan is generated for every new request.

270 K. Lee and M. Kim

Then the consistency of conflict-free execution with other services is checked. After
that, the service is carried out with the plan. This planning process for conflict-free
service providing is called whenever the new request occurs. When the number of
requests is numerous, that can be a burden to the system.

The other method checks the consistency checking before the plan for the service is
made. As this method checks the conflict ahead, the load of the system can be de-
ducted. The proposed method in this paper is in this category.

3 Proposed Method

When the execution condition of a service is matched to the current situation, the
service is selected. This selected service is adjusted according to its context informa-
tion. For example, let me assume a light control service. This service is lighting up or
dimming down the area according to the current situation. When there is no one in
that area, it turns off the light. When the TV is on, it dims down. When a user enters
this area, it lights up. For this service, the execution condition is the gap between the
current brightness and the necessary brightness. The necessary brightness is deter-
mined by the context of this service such as the existence of user, the operation of any
devices that affects the brightness of this area like TV, beam projector, or computer
monitor. The post condition will be the elimination of the gap between the current
brightness and the intended one. The conflict about this service will occur when one
user wants to turn off the light for sleeping and another user wants to turn of the light
for reading. This means that the intended brightness of the first user is different from
that of the second user. More generally, when the several services, which have mutu-
ally exclusive relation by their post condition, are selected at the same time, the con-
flict occurs.

The mutually exclusive relation among services can be known by their post condi-
tion factor. However, the origin of how these services can selected at the same time is
the context frame information they use. As shown in the Fig 3, when the services’
context frames are overlapped, the conflict may occur. The requester1 tries to select a
service which uses the states of device1 and device2 as its context. The requester2
tries to select another service which uses the states of device 3, device4, and device
2 as its context. The state of device2 is recognized by different services. If request2
knows that the device2’s state is used for request1’s context with a specific meaning,
request2 will change the service plan. Let me assume another example. There is a
temperature service. The current temperature is 25°C. One user wants to use this
service to heat up the area. The other user wants to use this service to cool down the
area. This conflict can be resolved at service execution time calculating whose request
is more important. However, if they know the meaning of the current temperature
such as temperature 25°C means a warm state, the heating service will not selected in
the first place. If the context data has a semantic meaning and this meaning is jointly
recognized by services, the conflict can be resolved at service selection time not
service execution time.

 A Novel Approach for Conflict Resolution in Context-Awareness 271

Requester 1

Device 1

Device 2

Device 4

Requester 2

Device 3

Fig. 3. Multi-cognition of the same object for different service’s context

3.1 Semantic Unification

With a global view of the situation, the conflict resolution will be easier. However, it
is a heavy burden for service providers to maintain the global view [4]. Therefore a
novel approach for conflict resolution with local view is necessary. This semantic
unification method is a way of sharing local information. For example, the heater can
work at temperature 25°C. At the same time the air-conditioner can work at the same
temperature. However, when it is cool, the air-conditioner will not operate. The pro-
posed method gives a raw data a meaning. With this meaning, the service can be
checked whether the conflict may occur before it selected.

Fig. 4. Priority Formula

Once the conflict is detected according to the meaning, the service is modified. For
example, temperature 25°C has the meaning of warm, the heating service will not
selected. However, the air-conditioner which tries to cool the area may be selected.
But the meaning warm is assigned by previous service and need to be remained warm.
In such case, the cooling service can be performed without conflicts until the warm
state is not changed. If the warm means the temperature between 22°C and 26°C, the
cooling service can be performed until the temperature becomes 22°C without chang-
ing the meaning. Therefore how to mapping the raw data to the semantic terminology
is one of the most important things in this method. Another feature needed to be con-
sidered is the priority of semantic assignment. When one service tries to remain a
warm state and another service tries to change the state into the cool state, the priority
of the request can be the answer. In order to compute the priority of the desired mean-
ing, we propose this formula shown in Fig 4.

The flow of semantic unification follows these steps. First, multiply recognized
context factors are retrieved. These factors can be found by scanning each service’s
context frame. Second, the service provider checks whether the assigned meaning of

272 K. Lee and M. Kim

the context factor exists when a service is selected. If the meaning is null, it assigns
the service’s post condition meaning which is the desired state of the service. If the
meaning is already assigned, the service provider calculates the priority of each mean-
ing and changes it according to the calculating result. Third, if the service is against
the meaning, the service is modified to archive the requester’s desire without chang-
ing the meaning or rejected. By using this semantic meaning of context factor, the
conflict can be detected before the service is selected and executed.

3.2 Service Model with the Proposed Method

The proposed model is shown in Fig 5. This model consists of 4 factors; sensors,
service list, sectioned blackboard and agents. The sensors are sensing the environment
and make the situation. The service list is a kind of database of services which are
possible in that environment. When a new service is registered, it stored in this list
with the service format information shown in Fig 2.

Environment

Agent 1

Sensor 1 Sensor 2 Sensor 3 Sensor N...

Agent K Agent M... ...

Sensed Object 1

Semantic
Meaning

Sensed Object 2

Semantic
Meaning

Sensed Object 3

Semantic
Meaning

Sensed Object 4

Semantic
Meaning

Sensed Object N

Semantic
Meaning......Sectioned Blackboard

Service List

Service

1. Context Frame
2. Execution Condition
3. Post Condition
4. Action Flow

Fig. 5. Proposed Model

The sectioned blackboard is where the semantically unified information is saved.
An agent is an essential member of this model which works as a service provider.
Every agent has its own service and provides its service to any user who needs that
service. When a new service is registered, it stored in service list and its agent is de-
ployed. This agent connects to the sensors for the service’s execution condition and
context. Once the sensed information is matched to the service’s execution condition,
the agent checks the sectioned blackboard for retrieving its context meaning. As the
blackboard is sectioned for the sensed data, its retrieving response time will be rele-
vantly short.

If a service’s post condition does not affect the current meaning of context used by
other service, it is selected and performed. If not, the service is suspended and modi-
fied. If the modification cannot satisfy the requester’s desire without changing the
existing meaning, it will be rejected. With this semantic information the conflict can
be detected before the service is selected.

 A Novel Approach for Conflict Resolution in Context-Awareness 273

4 Simulation and Results

In order to evaluate this proposed method, we assumed a simulation scenario and
tested the proposed method in this scenario. Table 1 shows the simple simulated envi-
ronment. In this environment, the temperature and brightness controls are served. In
this environment, two users exist with same user priority.

Table. 1. Simulated Environment

Environment
Temperature

Sensors
Brightness

Service Name Execution Condition Context Frame Post Condition
Temperature

Control
Temperature Gap

Air-Condition, Heater, Tem-
perature, User’s Location

Desired Tempera-
ture Services

Brightness
Control

Brightness Gap
Bed Lamp, Light, Brightness,

User’s Location
Desired Brightness

Air-Conditioner
Heater

Bed Lamp
 Devices

Light

The conflicts occur following the users’ movement in this given environment.

Firstly, this environment’s situation is 30Lx and 18°C. When a user enters this area,
the existence of the user changes the current situation. This change requests two ser-
vices; temperature and brightness control. The brightness control service lights up the
area and marks the semantic meaning of brightness as Bright. The temperature control
service warms the area to 22°C and marks the semantic meaning of temperature as
Warm. As the user sleeps, the brightness control service is operated and the semantic
of brightness is changed to Dark. Then the second user enters this area. His/her exis-
tence tries to select the brightness control service. This service will produce the con-
flict to the first user’s brightness control service. However, the semantic meaning of
brightness factor marked as Dark prevents the second user’s service from starting.
From this semantic meaning, the service provider knows that this area should be re-
mained dark. Therefore, the provider changes the service operation specification by
using the bed lamp not light. Even if the lamp turned on, the brightness of this area is
still Dark. Then the second user feels warm and the temperature control service is
selected. As the previous brightness control service, this request is suspended and
modified. If the modification can archive the second user’s desire without changing
the semantic meaning of temperature, the service is selected and performed.

The main factor of proper resolution is the way of mapping the raw data to the se-
mantic meaning. If the Dark means bright state between 0Lx and 80Lx, and the bed
lamp lights up the brightness over 80Lx, the second user’s service will not be started.
The same thing happens to the temperature control service. The goal of this proposed
method is to notify the operation of other services to the newly generated service. How
to determine the meaning of the operation is the system manager’s responsibility.

274 K. Lee and M. Kim

5 Conclusion

The context-awareness is necessary for providing autonomous and intelligent service
according to the dynamically changing environment. Nevertheless, the usage of con-
texts can result conflicts among services and this concludes the user’s inconvenience
and distrust to the system. In order to resolve these conflicts, several approaches are
studied. The most effective approach is preventing any services, which may conflict
with existing ones, from executing. As a service is selected, when the situation gratifies
the execution condition of the service, we assign a semantic meaning to the sensed
information that the service uses as its context. Once a service changes this meaning,
the other services which use the same context can be aware not only the physical data
but also the how it used by other services. With this semantic meaning, any services,
that use the same context, can be aware of how other related services work and adjust
their operation preventing conflict with other services.

The conflicts resulted from the parallel operation of multiple services which have mu-
tually exclusive relation can be resolved by using this semantic unification of context.

References

1 Dey, A.K.: Providing Architectural Support for Building Context-Aware Applications. PhD
thesis, College of Computing, Georgia Institute of Technology (2000)

2 Reiter, R.: The frame problem in the situation calculus: a simple solution (sometimes) and a
completeness result for goal regression. Artificial intelligence and mathematical theory of
computation: papers in honor of John McCarthy, 359–380 (1991)

3 Lee, K., Kim, M.: Conflict Resolution Method for Multi-Context Situation. In: The Eighth
Pacific Rim International Workshop on Multi-Agents, Malaysia, pp. 285–294 (2005)

4 Lee, K., Kim, W., Kim, M.: Resource Allocation in Multi-Agent System for Ubiquitous
Computing Service. In: The Eighth Pacific Rim International Workshop on Multi-Agents,
Malaysia, pp. 113–120 (2005)

5 Levesque, H., Pirri, F., Reiter, R.: Foundation for the situation calculus. Electronic Transac-
tions on Artificial Intelligence 2(34), 159–178 (1998)

6 Dey, A.K., Abowd, G.D., Salber, D.A.: A Context-based Infrastructure for Smart Environ-
ment. In: MANSE 1999, pp. 112–128 (1999)

7 Lee, K., Kim, K.: Service Selection Model using Situation in Ubiquitous Computing Envi-
ronment. In: The Fourth IEEE Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems, and the Second International Workshop on Collaborative Comput-
ing, Integration, and Assurance, pp. 147–151 (2006)

Improving Trade-Offs in Bilateral Negotiations
under Complete and Incomplete Information

Settings

Ivan Marsa-Maestre, Miguel A. Lopez-Carmona, and Juan R. Velasco

Departamento de Automatica, Universidad de Alcala, Spain
{ivan.marsa,miguelangel.lopez,juanramon.velasco}@uah.es

Abstract. A bilateral negotiation may be seen as an interaction be-
tween two agents with the goal of reaching an agreement over a given
range of issues which usually involves solving a conflict of interests be-
tween the agents. Usually, the agents taking part in the negotiation will
consider different issues to be the most important ones for satisfying their
goals, which allows to make issue trade-offs to search for joint gains. In
particular, similarity criteria have been used to perform trade-offs in bi-
lateral negotiations. This approach behaves differently depending on the
knowledge each agent has about its counterpart, and depending on the
order in which the different issues are considered. In this paper we pro-
pose two new approaches to improve the search for win-win solutions,
one for complete information settings and the other for incomplete infor-
mation settings. The experimental evaluation shows how our proposals
improve the efficiency and optimality of the negotiation process over
previous approaches.

1 Introduction

Integrative negotiation approaches intend to allow negotiating agents to search
for joint gains when pursuing an agreement [1,2,3]. For this to be possible, a
multi-issue negotiation scenario is required. In these scenarios, the negotiation
process and outcome is determined by the participant’s satisfaction functions
and the impact that the different issues under negotiation have over the utility
that each proposed contract yields to the negotiating agents. If the impact of the
issues under negotiation over the satisfaction function is different for each agent
(that is, some issues are more important for the player than for the opponent
and vice versa), the issues may be traded-off against one another, increasing the
social welfare of the deal [4]. In particular, this paper covers multi-issue bilateral
negotiations, which involve a bargaining process between two agents (a player
and an opponent), which exchange proposals (contracts) in order to reach an
agreement over a given range of issues. For these scenarios, several heuristic
approaches have been described, using different techniques. In [5], for example,
similarity criteria are used do select contracts during an iterated hill-climbing
search over the solution space. However, the random nature of the search impacts

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 275–286, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

276 I. Marsa-Maestre, M.A. Lopez-Carmona, and J.R. Velasco

the efficiency of the process, making necessary large populations of candidates to
ensure the similarity-based selection is really effective. In this paper we show that
the outcome and performance of the trade-off process may be improved by using
information about the derivatives of the agent’s valuation functions to direct the
search for joint gains to the regions of the solution space where, according to the
information available, it is more likely to find an optimal solution. In addition, we
observe that the order in which the different issues are processed by the trade-
off algorithm greatly impacts the final outcome. This is specially problematic
in incomplete information scenarios [6], where there is no information about
each agent’s counterpart preferences that could be used to determine the best
issue ordering for the algorithm. For these cases, we propose to use random
permutations of the ordering of the issues at each iteration of the algorithm
to mitigate the effect of the uncertainty about the opponent’s preferences over
the final outcome of the trade-off process. By performing experiments comparing
the basic trade-off algorithm to our mechanisms we show how our proposals may
provide benefits in terms of performance and optimality over previous works.

The rest of the paper is organized as follows. Section 2 recalls the most relevant
previous works our research is related to. Section 3 describes the mechanisms
we propose to improve trade-offs under complete information and incomplete
information settings. The experimental evaluation is provided in section 4. The
last section summarizes our main contributions and sheds light on some future
research.

2 Similarity-Based Negotiation Trade-Offs

In [5], an algorithm for carrying out trade-offs in automated negotiations is pro-
posed. It is based on finding a win-win solution through an iterated hill-climbing
search in a landscape of possible contracts. Contracts are defined as sets of val-
ues for the different issues which are being negotiated, and agent satisfaction
degrees for a given contract are computed using a weighted sum of monotoni-
cally increasing or decreasing scoring functions for each issue. Also, the concept
of iso-curve is defined as the curve comprising the solutions which yield a given
satisfaction degree for a given agent. The interaction protocol is a positional bar-
gaining, that is, only specific solutions to the negotiation problem are exchanged
between the agents. Once both agents participating in the negotiation have pro-
posed an initial solution, solutions proposed by both agents in the subsequent
steps of the negotiation are points lying in the same iso-curve while maximizing
the similarity to the opponent’s last offering. At any given point of the nego-
tiation, the search of the next proposal to make is performed by successively
generating random contracts which lay closer to the iso-curve and selecting
the most similar contract to the opponent’s proposal. The algorithm terminates
when the last selected contract lies in the iso-curve. This selected contract is
sent to the opponent, which runs the algorithm to generate the next proposal.
The process continues until the proposal generated by an agent is accepted by
its counterpart.

Improving Trade-Offs in Bilateral Negotiations 277

Fig. 1. Example of the trade-off algorithm with N=3 and S=7

Figure 1 shows a conceptual example of the algorithm for a negotiation re-
garding two issues, x and y. The algorithm starts at the opponent’s last offer, and
moves toward the iso-curve associated with the player’s last offer. This move-
ment is performed in S steps. At each step, N children contracts are generated
which are closer to the player’s target iso-curve by a utility difference E. That
is, all generated children lie in a player iso-curve which yields an increment E
in utility to the player compared to the children generated at the previous step.
From all generated children contracts, the most similar to the opponent’s pro-
posal is chosen as the starting point for the next step. After S steps, the chosen
contract lies in the target iso-curve, so the algorithm terminates and the chosen
contract is sent to the opponent as the next proposal.

3 Improving the Trade-Off Algorithm under Complete
and Incomplete Information Settings

We define the issues under negotiation as a finite set of variables x = {xi|i =
1, ..., n}, and a contract (or a possible solution to the negotiation problem) as
a vector s = {xs

i |i = 1, ..., n} defined by the issues’ values. The overall (or
global) satisfaction degree of a potential solution s for an agent j is V j(s) =
⊕

{
V j

i (xs
i)|i = 1, ..., n

}
, where ⊕ is an aggregation from [0, 1]n to [0, 1], and

V j
i (xi) is the agent j’s scoring function for the issue xi. For this work we restrict

ourselves to weighted additive aggregation functions and independent scoring
functions for each issue in the negotiation. That is, the overall satisfaction degree
of a potential solution s for an agent j is V j(s) =

∑
1≤i≤n ωj

i V
j
i (xs

i), where W j =

278 I. Marsa-Maestre, M.A. Lopez-Carmona, and J.R. Velasco

{ωj
i |i = 1, ..., n} models the importance that agent j assigns to each decision

variable i under negotiation as a weight ωj
i . Within this framework, we define two

mechanisms to improve the trade-off algorithm. The first one uses a derivative-
based approach to direct the search for solutions to a region of the solution space
where is easier to find an agreement. The second one uses random permutations
to mitigate the impact that the order in which the algorithm processes the issues
has over the outcome of the negotiation. Intuitively, we can see that the latter
mechanism will be more suitable for incomplete information scenarios (where
the uncertainty about the best issue ordering is higher), while the former will be
applicable in complete (or information scenarios, where information about each
agent’s valuation function is available to its counterpart.

3.1 Using Derivatives within the Trade-Off Algorithm

The trade-off algorithm [5] performs an iterated hill-climbing search over the
solution space. This is done by starting at the opponent’s last proposal, y, and
moving towards the iso-curve associated with the agent’s target increase in util-
ity E. The algorithm performs a total of S steps, and at each step it generates N
children contracts which are closer to the iso-curve than the ones in the previous
step. From all the children, the most similar to the opponent last proposal is
selected as the starting point for the next step. The algorithm generates children
by splitting the gain in utility randomly among the set of issues under negoti-
ation. For each issue i, the algorithm assign an utility increase for this issue
ri = min(random(Ei), E−En

ωi
), where Ei is the maximum gain for the issue xi

at this step, and E−En

ωi
is used to limit the final gain to E. Since the generation

of childrens at each step of the hill climbing process is random, a mechanism
which may be used to increase the effectiveness and efficiency of the search for
solutions is to perform a more directed hill-climbing, that is, to generate the
children at each step in the direction that causes the least satisfaction loss to
the opponent while increasing the agent’s own utility.

To this end, we allow an agent to use gradient information to influence the
hill-climbing path followed to generate the intermediate solutions for the differ-
ent steps of the trade-off algorithm. The information used is defined as a vector
dreq = {di|i = 1, ..., k; k < n}, where di is computed by normalizing the partial
derivatives ∂V (s)

∂xi
of the global satisfaction function of the agent issuing the re-

quest at the point defined by its opponent proposal. What we propose is using
this information to modulate the random utility gain splitting computed in each
iteration of the trade-off algorithm. Since the partial derivatives of the scoring
functions express how an agent’s utility varies with the variation of each individ-
ual issue, this information may be used to weigh the utility increase for each issue
at each step, so that the utility increase is performed mainly over the attributes
that less impact the other agent’s utility. The point in the algorithm to perform
this modulation is when the algorithm assigns an utility increase ri for each is-
sue xi. The utility increase is defined as ri = min(random(Ei

di
), Ei,

E−En

ωi
), thus

assigning more utility gain to those issues where the partial derivatives ∂V (s)
∂xi

Improving Trade-Offs in Bilateral Negotiations 279

express a lesser impact over the opponent’s utility and vice versa. Algorithm 1
shows the modified trade-off algorithm to take advantage of gradient information.

Our hypothesis is that using derivatives in this way within the algorithm will
direct the hill-climbing process to solutions that, while keeping the player’s sat-
isfaction constant, have a lesser impact over the opponent’s satisfaction, thus
improving the outcome of the trade-off algorithm in terms of player and oppo-
nent’s utility. Furthermore, by restricting the hill-climbing path to a direction
known to provide more satisfying solutions, less children will be needed to achieve
a certain result, thus improving algorithm efficiency in terms of computational
complexity.

Input:
y: last step opponent’s offer
E: step utility increase
Vi(): Value scoring functions for the decision variables
ωi: importance weights for the decision variables
di: normalized derivative of the opponent’s scoring function for the decision
variables
Output: Y : new child of y
foreach decision variable i do

Ei = 1 − Vi(yi)
end
k = 0; En = 0;
while En < E do

k = k + 1
foreach decision variable i do

if En < E then
ri = min(random(Ei

di
), Ei,

E−En
ωi

)
else rk

i = 0
end

end
foreach decision variable i do

Ei =
�

1≤j≤k rj
i

Y = V −1
i (Vi(yi) + Ei)

end

Algorithm 1. Children generation for the trade-off algorithm using gradient
information

3.2 Using Random Permutations of the Issue Ordering

Though children generation within the trade-off algorithm is based on randomly
splitting the gain in utility among the different issues, this random energy distri-
bution is not uniform, and thus generated children are not uniformly distributed
either. Each one of the N children used at each one of the S steps is generated
as follows. The maximum gain in utility for each issue is Ei = 1−Vi(yi), and the

280 I. Marsa-Maestre, M.A. Lopez-Carmona, and J.R. Velasco

maximum overall utility gain for each step is E = V (x)−V (y)
S , computed by di-

viding the difference in player’s utility for the agents’ last proposals between the
number of steps. The algorithm cycles through the different decision variables,
assigning a random utility gain to each one of them until the total increase of
utility En reaches E. To make sure that neither the maximum utility gain per
issue Ei nor the maximum overall utility gain E are exceeded, the utility increase
for each issue at each cycle k is defined as rk

i = min(random(Ei), E−En

ωi
), and

the values of Ei and En are updated after each utility assignment. On average,
and assuming perfect random number generation, each utility assignment will
increase En by half of the issue’s remaining potential gain ωiEi. Therefore, is-
sues processed by the algorithm first will, on average, be assigned higher utility
gains, and thus children will be unevenly distributed in the solution space.

We can see how this bias in children generation at each step may affect the
final outcome of the trade-off algorithm in terms of joint utility. Let p and o be
the player and opponent agents in a negotiation, respectively, and let x and y
be the last proposals from the agents. The player uses the trade-off algorithm to
hill-climb from the opponent’s last proposal to a solution s which gives her the
same utility that her own last proposal. Therefore, the player’s utility after the
trade-off will always be V p(s) = V p(x), and thus the evaluation of the algorithm
effectiveness must be based on the opponent’s utility V o(s). In a worst case sce-
nario, the agent’s preference functions V j

i for each issue are such that an increase
of the utility for a player in a given issue causes the utility for the opponent in
this issue to decrease in the same amount. The impact of varying issue i utility
over the overall utility gain for each agent is determined by the weights ωj

i . In
particular, V o = −ωo

i

ωp
i
 V p when only issue i is varied. Therefore, the trade-off

will be more effective if higher utility gains are assigned to the issues minimizing
ωo

i

ωp
i
. Under complete information settings, this may be achieved by ordering the

cycling through the issues according to ωo
i

ωp
i
, making the algorithm process first the

decision variables which are more important to the player than to the opponent.
However, under incomplete information settings, the opponent’s weights may
not be known to the player. In this cases, using an arbitrary issue ordering may
negatively impact the outcome of the negotiation. To address this problem, we
propose to use a different random ordering of the issues to generate each children
at each step. In this way, the N children generated at a given step of the algo-
rithm will be uniformly distributed in the solution space, and similarity criteria
may be used to choose among children without a bias due to issue ordering.

4 Experimental Analysis

Our experiment plan is designed to determine whether the proposed mecha-
nisms provide an improvement to the efficiency and optimality of the negotiation
process over the previous work described in Section 2. To this end, we have repro-
duced the experiments performed in [5], comparing the results of their trade-off
algorithm with the results obtained applying the proposed mechanisms.

Improving Trade-Offs in Bilateral Negotiations 281

4.1 Experimental Settings

To evaluate the contribution of the proposed mechanisms to the trade-off algo-
rithm, single offer experiments have been performed. The experimental proce-
dure consists of inputting two contracts (representing the agent’s initial
utterances) into the algorithm and observing the execution trace of the algo-
rithm for one offer from the player to the opponent (i.e. observing how the
algorithm climbs from the opponent’s proposal to a new proposal which have
the same utility than the player’s initial proposal in S steps). Contracts are
chosen so that they give a high utility to the proposer and a low utility to its
counterpart. The importance weight vectors of the agents, used to compute the
global satisfaction function for each agent, are fixed throughout the negotiation:
Wplayer = [0.15, 0.25, 0.1, 0.5] and Wopponent = [0.35, 0.05, 0.5, 0.1].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

value(player)

va
lu

e(
op

po
ne

nt
)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

value(player)

va
lu

e(
op

po
ne

nt
)

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

value(player)

va
lu

e(
op

po
ne

nt
)

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

value(player)

va
lu

e(
op

po
ne

nt
)

(d)

Fig. 2. Effect of the use of knowledge about derivatives (Wopponent) over the trade-off al-
gorithm under different issue orderings: a) all derivatives, order [1 2 3 4], b) all derivatives,
order [3 2 4 1], c) two derivatives, order [1 2 3 4], d) two derivatives, order [3 2 4 1]

282 I. Marsa-Maestre, M.A. Lopez-Carmona, and J.R. Velasco

The effect of derivatives has been measured performing different experiments,
ranging from assuming knowledge about the derivatives for one issue to assum-
ing perfect knowledge about the derivatives for all issues. The outcome of the
experiments has been compared to the same experiments without using deriv-
atives. Finally, taking into account that, as observed in [7], the order in which
the different issues are processed by the trade-off algorithm greatly impacts the
final outcome, we have repeated the experiments for different issue orderings.

The effect of using random issue-ordering permutations over the trade-off algo-
rithm has been measured by applying random permutations as defined in Section
3.2, and comparing the outcome to the same experiment made with random sta-
tionary issue orderings, that is, orderings which are chosen at the beginning of
the algorithm execution and do not change between algorithm iterations.

To evaluate the contribution of the different mechanisms to the algorithm
in terms of effectiveness, we have performed the experiments for the best case
described in [5], using S = 40 as the number of steps to reach the iso-curve
and N = 100 as the number of children generated at each step. To evaluate the
contribution of the different mechanisms to the algorithm in terms of efficiency,
we have performed a set of experiments varying the number of children N, in
order to test our hypothesis that fewer children are needed to achieve the same
result when using derivatives or permutations within the trade-off algorithm.

4.2 Experimental Results

Figure 2 shows the results of using derivatives within the trade-off algorithm.
Each graphic shows the results of 10 runs of the experiment. The x-axis and
y-axis represent, respectively, the player and opponent utilities. A black line
joining (0,1) and (1,0) represent the Pareto-optimal line, computed using the
weighted method [4,8], so that the optimality of the heuristic approaches may
be assessed against the analytical optimum. For each run we have represented
the initial contracts issued (depicted as gray squares), and the execution trace of
the trade-off algorithm under evaluation. The points represent the hill-climbing
paths followed by the algorithm from the opponent initial contract (upper left
corner) to the player’s trade-off proposal (right side of the graph). The trace of
the basic trade-off algorithm has been represented using light gray diamonds,
while the trace of our proposed derivative-based approach has been represented
using dark grey plus signs (+). For comparison, a random reference trade-off

Table 1. Statistical results for 100 runs of the experiment comparing the basic trade-off
algorithm with the use of derivatives

Figure Basic Derivatives
median conf. interval median conf. interval

1. (a) 0.2844 [0.2807, 0.2881] 0.5528 [0.5499, 0.5556]
1. (b) 0.5411 [0.5375, 0.5488] 0.6404 [0.6395, 0.6413]
1. (c) 0.2867 [0.2828, 0.2905] 0.4921 [0.4898, 0.4945]
1. (d) 0.5430 [0.5390, 0.5469] 0.5747 [0.5735, 0.5759]

Improving Trade-Offs in Bilateral Negotiations 283

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

value(player)

va
lu

e(
op

po
ne

nt
)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

value(player)

va
lu

e(
op

po
ne

nt
)

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

value(player)

va
lu

e(
op

po
ne

nt
)

(c)

Fig. 3. Effect of the use of random permutation in children generation within the
trade-off algorithm. a) permutation applied to all issues, b) permutation applied to
three issues, c) permutation applied to two issues.

algorithm –where candidates at each step are randomly chosen among all gen-
erated children without using similarity criteria or derivatives– has been repre-
sented using black crosses (x). In figures 2 a) and b) we have used information
about all the partial derivatives of the opponent’s valuation functions, which is
the same knowledge used in [5] for the perfect knowledge experiments, since for
a linear additive scoring system, the opponent weights Wopponents equal the par-
tial derivatives of the valuation function. In figures 2 c) and d), we have assumed
knowledge of the partial derivatives for only two issues. Table 1 shows the me-
dians and the 95% confidence intervals for 100 runs of the experiments depicted
in the figure. We can see that there is a significant improvement of the utility
of the final outcome for the opponent, and that the improvement is more signif-
icant for some orderings, yielding utility gains of nearly 80% over the approach
in [5]. We can also see that the results achieved using derivatives are closer to
the Pareto-optimal line than those obtained by using the basic similarity-based
approach. From these results we can conclude that the use of derivatives makes
the trade-off algorithm more robust to the ordering of the issues. In addition,
we can see that using incomplete knowledge of the derivatives makes the im-
provement decrease, but still keeping the results better to the ones yielded by
the basic algorithm. This shows that the derivative based approach is not only

284 I. Marsa-Maestre, M.A. Lopez-Carmona, and J.R. Velasco

Table 2. Statistical results for 100 runs of the experiment comparing the basic trade-off
algorithm with the use of permutations

Figure Basic Permutation
median conf. interval median conf. interval

2. (a) 0.304 [0.2541, 0.3539] 0.5546 [0.5538, 0.5554]
2. (b) 0.5397 [0.4899, 0.5776] 0.6053 [0.6009, 0.6096]
2. (c) 0.5648 [0.5611, 0.5684] 0.5620 [0.5605, 0.5635]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

value(player)

va
lu

e(
op

po
ne

nt
)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

value(player)

va
lu

e(
op

po
ne

nt
)

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

value(player)

va
lu

e(
op

po
ne

nt
)

(c)

Fig. 4. a) and b): Comparison of the outcome of the basic tradeoff algorithm with N =
100 against the use of derivatives with N = 10 for ordering [1 2 3 4] (a) and [3 2 4 1] (b).
c): Comparison of the outcome of the basic tradeoff algorithm with N = 100 against the
use of random permutations with N = 10. Permutation applied to two issues.

useful in complete information settings, but also in settings where there is partial
information available about the opponent’s valuation function.

Figure 3 shows the results of using random ordering permutations for children
generation as described in section 3.2. Each graphic shows the results of 10 runs
of the experiment. Figure 3 a) shows the results when random permutation is
applied to all issues. Figure 3 b) shows the results obtained when the algorithm
takes the issue which minimizes ωo

i

ωp
i

first, and the rest of issues are randomly or-
dered. Finally, figure 3 c) shows the results when the two issues which minimize
ωo

i

ωp
i

are processed by the algorithm first and random permutation is applied to
the remaining two issues. Table 2 shows the medians for the results obtained. We
can see that, in the case of uncertain knowledge (all issues are ordered randomly)
the results of the basic trade-off algorithm have a higher variance, while the util-
ity yielded by the random permutation approach is more stable. On average,
using random permutations for children generation yields a significant improve-
ment in opponent’s utility when no information about the opponents weights
is known, and the improvement decreases when more information is available.
We can see that, when there are only two issues whose ordering is unknown
(Figure 3. c), using random permutations yields slightly worse performance than
the basic algorithm, since there are only two possible orderings. Therefore, ran-
dom permutations should only be applied when there is uncertainty about the
best ordering of the issues.

Improving Trade-Offs in Bilateral Negotiations 285

Finally, Figure 4 compares the derivative-based and permutation-based ap-
proaches to the basic trade-off algorithm in terms of efficiency, showing the
results when using different number of children in the algorithm. We can see
that both approaches can yield to a significant reduction of the number of chil-
dren needed for a given outcome, thus increasing the efficiency of the negotiation
process. Figure 4 shows that, using the proposed mechanisms, we can reduce the
number of children by even one order of magnitude while achieving the same
effectiveness. Since, for a single offer experiment, the algorithm is called SN
times, where S is the number of steps used for the algorithm and N the number
of children generated as each step, this reduction greatly enhances the efficiency
of the process.

5 Conclusions and Future Work

In automated multi-issue negotiation scenarios, it is not unusual that the agents
taking part in the negotiation will consider different issues to be the most impor-
tant ones for satisfying their goals. The difference between the weights that each
negotiating agent gives to each issue allows negotiators to make trade-offs, vary-
ing the values of the different issues so that the utility for one agent may remain
the same while the utility for its counterpart increases, thus improving overall
joint utility. In [5], similarity criteria are used to perform trade-offs in bilateral
negotiations. In this paper, we present two different mechanisms to improve the
similarity-based trade-off algorithm. The first is based on using knowledge about
the derivatives of the opponent’s valuation functions to influence the direction in
which new solutions are searched for. The second uses random issue permutations
for children generation to make the algorithm more robust against the uncertainty
about the correct issue ordering. Our experiments have validated our hypothe-
ses: that the proposed mechanisms improve the basic trade-off algorithm both in
terms of optimality and performance. The derivative-based approach is more suit-
able for complete information scenarios (where information about the opponent’s
valuation functions is available), while random permutations should be used for
incomplete information settings [9], where the correct issue ordering is not known.

Though the experiments have yielded satisfactory results, there is still plenty
of research work to be done in this area. Metastrategy experiments as defined
in [5] should be performed to evaluate the contribution of the proposed mecha-
nisms to the overall negotiation process. A more in-depth performance analysis
of the algorithm is main priority for future work. Finally, we are interested in
extending the trade-off algorithm and our mechanisms to make them able to
handle nonlinear scoring functions and issue interdependency, which are the real
challenges in complex negotiation.

Acknowledgment

This work has been supported by the Spanish Ministry of Education and Sci-
ence grant TSI2005-07384-C03-03 and the Comunidad de Madrid grant CCG07-
UAH/TIC-1648.

286 I. Marsa-Maestre, M.A. Lopez-Carmona, and J.R. Velasco

References

1. Lopez-Carmona, M.A., Velasco, J.R., Marsa-Maestre, I.: The agents’ attitudes in
fuzzy constraint based automated purchase negotiations. In: Burkhard, H.-D., Lin-
demann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS, vol. 4696, pp.
246–255. Springer, Heidelberg (2007)

2. Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Protocols for negotiating complex
contracts. IEEE Intelligent Systems 18(6), 32–38 (2003)

3. Ito, T., Klein, M., Hattori, H.: A multi-issue negotiation protocol among agents with
nonlinear utility functions. Multiagent and Grid Systems 4(1), 67–83

4. Raiffa, H.: The Art and Science of Negotiation. Harvard University Press (1982)
5. Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make issue trade-

offs in automated negotiations. Artificial Intelligence 142(2), 205–237 (2002)
6. Jonker, C., Robu, V.: Automated multi-attribute negotation with efficient use of

incomplete preference information. In: Proceedings of the International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS 2004), pp. 1054–1061
(2004)

7. Ros, R., Sierra, C.: A negotiation meta strategy combining trade-offs and concession
moves. Autonomous Agents and Multi-Agent Systems 12(2), 163–181 (2006)

8. Ehtamo, H., Ketteunen, E., Hamalainen, R.P.: Searching for joint gains in multi-
party negotiations. European Journal of Operational Research 1(30), 54–69 (2001)

9. Lai, G., Li, C., Sycara, K.: Efficient multi-attribute negotiation with incomplete
information. Group Decision and Negotiation 15(5), 511–528 (2006)

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 287–294, 2008.
© Springer-Verlag Berlin Heidelberg 2008

PAMS – A New Collaborative Framework for
Agent-Based Simulation of Complex Systems

Trong Khanh Nguyen2, Nicolas Marilleau1, and Tuong Vinh Ho2

1 Geodes, Institut de Recherche pour le développment (IRD),
32 av. H. Varagnat, 93143 Bondy Cedex, France

2 MSI Lab, Institut de la Francophonie pour l'Informatique(IFI),
ngo 42, Ta Quang Buu, Ha Noi, Viet Nam

ntkhanh@ifi.edu.vn, nicolas.marilleau@ird.fr,
ho.tuong.vinh@auf.org

Abstract. Major researches in the domain of complex systems are interdiscipli-
nary, collaborative and geographically distributed. The purpose of our work is
to explore a new collaborative approach that facilitates scientist’s interactions
during the modelling and simulating process. The originality of the presented
approach is to consider models and simulators as a board of the collaboration: a
shared object manipulated by a group of scientists. Agent-based simulations are
powerful tools for studying complex systems. In this context, we develop a
collaborative platform dedicated to agent-based simulation (PAMS). This new
environment integrates common collaborative tools (e.g. videoconferencing, in-
stant messaging, whiteboard) and specific tools to share and manipulate models,
simulators, experiments and results... The current version of PAMS is based
technologies coming from distributed systems. Today PAMS has been designed
to support major agent based simulation frameworks. This paper aims to give
an overview of the PAMS environment by defining the collaborating approach,
the framework architecture and an example of its utilization.

Keywords: Collaborative simulation, agent-based simulation, distributed systems.

1 Introduction

Modeling and simulation often requires cooperation between researchers from differ-
ent disciplines. Data collection, model conceptualization and implementing those
models using computational tools all require close teamwork amongst various players
(domain experts, modelers and computer scientists). Modern-day research projects are
interdisciplinary, collaborative, and researchers are often geographically separated.
Given these modern conditions, the use of collaborative systems becomes essential to
facilitate complex systems research when a team of geographically and professionally
dispersed researchers must work together towards a common goal.

The advent of new information technologies and communications tools over the
past fifteen years has enabled the development of a plethora of collaborative plat-
forms [2]. A few of them, such as BSCW [11], E-Groupware[12], and Sakai [1] have

288 T.K. Nguyen, N. Marilleau, and T.V. Ho

positioned themselves as collaboration-oriented extensions of generalist communica-
tions platforms in the scientific world. These products integrate specific functional-
ities facilitating: (i) access to knowledge and scientific information, (ii) interaction
and collaboration between researchers, and (iii) a more effective dissemination of
research results. These activities are often referred as “E-Research”. The platforms
supporting such work are referred to as Virtual Research Environments (VRE) [13].

VRE systems are still relatively undeveloped. Most of the available environments
remain incapable of supporting significant collaborative efforts; despite growing de-
mands for such tools the scientific community [6]. Most of these collaboration sys-
tems are simply data repositories with web interfaces [5].

In the domain of modeling and simulation of complex systems, the use of agent-
based simulation models (ABM) is increasingly popular. Many ABM platforms (Re-
past [8], NetLogo [9], Swarm [7] or GAMA [3]) have been developed and used by
researchers [3, 10]. In the context of collaborative research, one major question is:
How can geographically diverse researchers effectively work together to conduct
ABM simulations without regard to the ABM platforms used?

One of our research interests focuses on the design and implementation of collabo-
rative environments for computer modeling and the simulation of complex systems,
essentially those based in ABM. The main idea is to place models, simulators, ex-
periments and results at the center of the collaboration. From this idea, we have de-
signed and developed methodologies and a form of “groupware” (known as “PAMS”)
for supporting collaboration between domain experts, modelers and computer scien-
tists. PAMS is a type of web-based groupware containing common collaborative tools
(video-conferencing, instant messaging, and so on) and specific tools dedicated to the
simulation domain (sharing experiments, results, experience exchange...).

The aim of this paper is to present the PAMS framework. Firstly, we shall summa-
rize the platform’s functionalities. Secondly, we provide a short description of the
PAMS architecture. Finally, a case study is described demonstrating how a collabora-
tive simulation might be executed within this new paradigm.

2 PAMS – A New Collaborative Framework for Agent-Based
Simulation of Complex Systems

The PAMS project introduces a new approach to collaboration in research projects.
Models and simulators will no longer simply come in the form of “research results”
distributed to the community through scientific communications (journal articles,
workshops etc.). Rather, with PAMS, models and simulators become concrete entities
available to interested parties on the web to support collaborative work and research.
The originality of our approach is to consider the model or the simulator as an object
shared by a group of researchers, which can be manipulated, configured, analysed and
so on.

 PAMS groupware is an environment allowing researchers to work together in de-
signing or exploring models (execution of models based on various scenarios, interac-
tions conceptualized in various contexts or of a specific simulation). For example,
consider a scenario for collaboration between researchers in which they used the
software environment in development.

 PAMS – A New Collaborative Framework 289

Scenario1: “Collaborative experimentation from distance”

Mr. X and Y, researchers in ecology, respectively located in Paris and Hanoi, wish to
execute some simulations in order to get results that will be illustrated in an article
they will write together. The two researchers connect to the project website and begin
a private discussion. Mr. X starts the simulator, and suggests that Mr. Y. shares his
interface. Mr. X starts entering simulation parameters, which are not suitable to Mr
Y. Mr Y starts a videoconferencing session to share with Mr. X his surprise. He posts
a note on the simulator interface indicating the value of parameters that seem correct
to him. After discussion, and display, by Mr. Y, part of the item they want to illustrate,
the two fall into agreement on common values. Mr. X launches the simulation and
then chooses to display only the graph of the evolution of biodiversity, while Mr. Y
visualizes the spatial distribution of species. Each researcher posts annotations of
visualization in real time on his own interface, which also appear on the interface of
his colleague and they begin holding a discussion (registered as such in the instant
messaging system). Due to time constraints, however, Mr. X must leave. They both de-
cide to resume this discussion later and record the session. Three days later, return-
ing to the site, the conversation restarts and resumes in the state where it had been
left earlier…

This scenario shows that the use of a collaborative tool firstly: addresses the prob-
lem posed by the geographical dispersion of researchers and secondly, brings a fresh
dimension to the simulation activities of complex systems.

An agent-based simulator is run many, many times using different parameter val-
ues in order to postulate various situations and to understand the dynamics of the
studied system. In this context, users focus on inputs and outputs of a model. They are
free to forget how the model works. For this reason, we assume that a perfect agent-
based simulator is a “black box” that scientists (except for the box’s creators) use by
defining inputs and analyzing outputs without really caring how the “black box”
works.

Existing Open Source web-based groupware constitutes a solid basis upon which it
is possible to add new modules providing collaboration in the field of complex sys-
tems. We chose one of them called “Sakai”[1] and added new collaborative modules
dedicated to simulation activities, such as: (i) setting simulations; (ii) executing simu-
lations on a remote server; (iii) visualising and analysing results; (iv) managing
versions of available models; (v) archiving experiments and results; (vi) annotating
experiments and results (giving contextual comment).

3 PAMS: A Modular Environment

3.1 Logical Architecture

PAMS is based on a multi-tier architecture called Model View Controller (MVC)
[15]. This approach distinguishes graphical user interface (Presentation Tier) from the
kernel of the application (Logic Tier) and databases (Data Tier).

Fives modules compose the kernel of the PAMS environment (See figure 1):

−Simulation platform drivers package contains the kernel of agent-based plate-
forms such as Repast [8] or Gama [3].

290 T.K. Nguyen, N. Marilleau, and T.V. Ho

−Outputs package manages simulation results coming from simulation platforms,
and shares these data for other modules of the systems.

−Displays package formats shared outputs in order to generate and manage user
displays: monitors, plots and/or 2D grids (images).

−Recorder package saves every value that an output has taken during a simula-
tion in a database. This data is read by the experiment’s web browser interface.

−Controllers package aims at managing experiments and simulators, ensuring
the coherency and concurrency of objects shared by users (parameters, simula-
tion outputs, experiments…).

Fig. 1. PAMS logical architecture

The PAMS environment proposes a generic web-based collaborative GUI. This in-
terface takes advantage of typical collaborative tools (video-conferencing, white-
board and so on) coming from Sakai and Agora tools. In addition, PAMS provides
functions dedicated to the simulation domain:

−A collaborative simulation board for executing and sharing remote simulators
−An experiment browser for managing and replaying completed experiments

and exchanging results.

Today, PAMS supports simulators derived from two agent-based platforms: Repast
and Gama. A few famous and simple simulators were deployed, e.g. the life game
(Enn for Repast, Life for Gama) to test PAMS functionalities. In addition, specific
simulators, as GamaAvi, with its origins in a multi-disciplinary research project, are
and will be added. Scientists (epidemiologists, geographers, computer scientists or
mathematicians) will use these simulators to run experiments and to collaborate.

3.2 Technological Architecture

The PAMS framework is a distributed system. It can be viewed as a container in
which simulators are loaded, connected with a database, executed by dedicated serv-
ers and managed through a web interface.

 PAMS – A New Collaborative Framework 291

Fig. 2. Technological architecture

PAMS is based on common technologies from the domain of distributed systems
(see figure 2):

−A web application server based on Jsp, Ajax and Servlet (Tomcat) to manage
the collaborative and adaptable web interface that displays models, experiments,
simulators and results with a simple, adaptable and didactic structure of data.

−An Enterprise Java bean application server (Jonas) to execute simulators,
manage experiments, inputs, outputs and collaboration.

−A Database (MySQL) to store models, experiments inputs, outputs and ex-
changes between PAMS users.

The PAMS framework takes advantage of the Sakai environment [1]. Sakai is an
online Collaboration and Learning Environment that permits research exchange. From
the Sakai environment, we developed new modules that manage a collaborative GUI
specific to the simulation domain (experiment viewer, simulation board etc). The
PAMS module is associated with the Agora environment [14]. Agora is a plug-in of
Sakai that offers typical collaborative features like videoconferencing, whiteboard,
chat and others.

The use of Enterprise Java Beans is one of the keys that allows PAMS environment
to be flexible, modular and modifiable. Each module of the framework is composed
of several EJBs. Every EJB of a same module is used through a unique interface (de-
termined for the module). To improve the PAMS framework, new EJB could be de-
veloped and dynamically deployed without revising old PAMS components. But,
these new EJBs must follow predefined interfaces of the PAMS.

The PAMS environment can be deployed on a GRID of computers. Thanks to this
distributed architecture, load-balancing rules can be imagined to spread experiment
executions over a GRID.

Most of agent-based simulators depend on a specific platform such as Netlogo,
Repast or Madkit. These agent-based frameworks must be installed on the computer
before the setup of the simulator. Sometimes, simulators need a database to obtain
working data. Simulator setups are not trivial: much experience in computer science is
required. In addition, many simulators need resources (memory or processor) that are
not available on a personal desktop or laptop. Thanks to the web interface of PAMS

292 T.K. Nguyen, N. Marilleau, and T.V. Ho

and its distributed architecture, scientists have nothing to install before using the
framework. In addition they can take advantage of resources provided by the Grid in
which the platform is executed.

4 Case Study

The aim of this case study is to show how a group of scientists can use the PAMS
environment to run simulations and collaborate. Scenario 1 (“Collaborative experi-
mentation from a distance”) can be taken as an example. In this instance, Mr. X and
Mr. Y, want to study the famous Life game model [4].

Consider that a PAMS service is running on a server. This service supports various
agent based simulation frameworks, in particular the Repast environment. Several
simulators have been installed, deployed and are available. For example, the environ-
ment proposes the Enn simulator, which is a Repast version of the Life game model.

Using a web browser, Mr. X and Mr. Y connect themselves to the PAMS platform.
After the identification step, they access to their private workspace. Mr. X is the initiator
of the experiment. He has to create an experiment and to determine the participants.
From a list available in the agent-based simulator, Mr. X selects the Enn simulator. A
new display appears that shows information about the Enn simulator: aims of the model,
inputs, outputs and so one. On this screen, Mr. X can see every public experiment done
with the Enn simulator. But, he prefers to create a new one. For that, X inputs a com-
ment about the new experiment (its aim) and selects participants from a list of sub-
scribed persons. In the case of this scenario, Mr. X selects Mr. Y. and submits the form.
The experiment is now created. X is waiting Y’s connection to start simulations.

Y selects the Enn simulator from the list that contains available agent-based simu-
lators. Information about this simulator is displayed, and Y sees that X has invited
him to participate in an experiment. Y selects connects to the experiment.

X and Y are seeing the same display: the simulation board of the Enn simulator.
For that, he takes the token. Mr. Y’s display is freezing. Y cannot perform the action
on the simulator board, but he sees modifications. After doing modifications, X re-
leases the token.

Y does not agree with X’s parameter modification. To explain his surprise, Y starts
a videoconferencing session integrated in the Agora meeting tool (see figure 2).
Thanks to video, audio and whiteboard tools, Y discusses with X. X and Y exchange
their opinions through a user-friendly GUI. To illustrate its says, Y shows an article
by sharing its desktop and convinces X. X wants to modify simulation parameters
according to Y’s recommendation. He takes the token and changes parameter values.
Then, X starts the simulation.

X and Y see the evolution of predetermined outputs in real time. During the simu-
lation, they discuss the evolution of the outputs. From these results, X and Y begin an
analysis and make hypothesis about the phenomena they see.

Due to time constraints Mr. X must leave. They both decide to resume this discus-
sion later. So they record the session. Three days later, returning to the site, the con-
versation starts and resumes in the state where it had been left earlier…

Figure 3 shows the screen shots (of the PAMS environment) during the execution
of the above scenario.

 PAMS – A New Collaborative Framework 293

Fig. 3. Screen shot of the PAMS environment (Desktop of Mr. Y)

5 Conclusion

PAMS is a collaborative framework for simulating Agent-based models of complex
systems. It is based on an original approach in which the simulator supports the ex-
change: it is a shared object manipulated by every member of a scientific group. In
addition, we consider that users view a simulator as a “black box”. So users concen-
trate and collaborate on the input and output of the simulators.

Scientists are able to collaborate in this manner thanks to a web-based GUI that al-
lows remote, shared access to simulators. This GUI contains common tools (video-
conferencing, instant-messaging, whiteboard, and so one), which are improved by
specific tools dedicated to the domain of the simulation of complex systems. This
GUI supplies collaborative functions to setup simulators, to execute simulators on a
remote server, to visualize and analyze simulation results, and to keep logs of each
experiment.

Currently, the PAMS environment supports two agent-based simulation platforms
(Repast and Gama). Adding new drivers will support of every simulation platform in
the future. The modularity of PAMS permits our environment to be improved in many
ways. Adding new kinds of displays or collaborative tools is one example.

The PAMS environment will be improved in many ways: (i) adding new collabora-
tive tools (e.g. an annotating system to comment experiments), (ii) optimizing the
system (e.g. adding load-balancing strategies), and (iii) supporting new agent based
simulation platforms (e.g. Madkit, Repast and so on). Before that happens, we will
have to test the existing version on a concrete research project applied to, for instance,
geography or epidemiology. Feedback from these tests will provide the vital keys we
require to further development and future improvements of the PAMS environment.

294 T.K. Nguyen, N. Marilleau, and T.V. Ho

References

1. Severance, C., Hardin, J., Golden, G., Crouchley, R., Fish, A., Finholt, T., Kirschner, B.,
Eng, J., Allan, R.: Using the Sakai collaborative toolkit in e-Research applications. Con-
currency and Computation: Practice and Experience 19(12), 1643–1652 (2007)

2. Saint-Voirin, D.: Contribution à la modélisation et à l’analyse des systèmes coopératif: ap-
plication à la e-maintenance. Université de Franche-Comté, Besançon (2006)

3. Amouroux, E., Quang, C.T., Boucher, A., Drogoul, A.: GAMA: an environment for im-
plementing and running spatially explicit multi-agent simulations. In: Prima-2007, Bang-
kok (2007)

4. Conway, J.: The Game of Life. Scientific American 223, 120–123 (1970)
5. Henriksen, J.O., Lorenz, P., Hanisch, A., Osterburg, S., Schriber, T.J.: Web based simula-

tion center: professional support for simulation projects. Winter Simulation Conference-
2002 1, 807–815 (2002)

6. Ahmed, K., Brahim, B.: Towards a Web Based Simulation Groupware: Experiment with
BSCW. Information Technology Journal 1812(5638), 332–337 (2008)

7. Terna, P.: Simulation Tools for Social Scientists: Building Agent Based Models with
SWARM. Journal of Artificial Societies and Social Simulation 1(2) (1998)

8. North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations of the
Repast Agent Modeling Toolkit. ACM Transactions on Modeling and Computer Simula-
tion 16(1), 1–25 (2006)

9. Wilensky, U., Evanston, I.L.: NetLogo. Center for Connected Learning and Computer
Based Modeling, Northwestern University (1999)

10. Railsback, S.F.: Agent-based based Models in Ecology: Patterns and Alternative Theories
of Adaptive Behaviour. In: Agent-Based Computational Modelling, pp. 139–152. Physica-
Verlag (2006)

11. Horstmann, T., Bentley, R.: Distributed authoring on the Web with the BSCW shared
workspace system. StandardView 5(1), 9–16 (1997)

12. Becker, R., Becker, B., Knotte, M., KreiBlemeyer, I.: Manual eGroupware 1.4. Creative
Commons (2007)

13. Yang, X., Allan, R.: Web-Based Virtual Research Environments (VRE): Support Collabo-
ration in e-Science. In: WI-IATW 2006: Proceedings of the 2006 IEEE/WIC/ACM inter-
national conference on Web Intelligence and Intelligent Agent Technology, pp. 184–187.
IEEE Computer Society, Los Alamitos (2006)

14. Severance, C., Hardin, J., Golden, G., Crouchley, R., Fish, A., Finholt, T., Kirschner, B.,
Eng, J., Allan, R.: Using the Sakai collaborative toolkit in e-Research applications. Con-
currency and Computation: Practice and Experience 19(12), 1643–1652 (2007)

15. Reenskaug, T.: The Model-View-Controller (MVC) Its Past and Present. JavaZONE Con-
ference, Oslo (2003)

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 295–306, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Methodological Steps and Issues When Deriving
Individual Based-Models from Equation-Based Models:

A Case Study in Population Dynamics

Ngoc Doanh Nguyen1,2, Alexis Drogoul1,2, and Pierre Auger1

1 IRD, GEODES UR 079,
32 avenue Henri Varagnat, 93143 Bondy Cedex, France

2 MSI, IFI, Hanoi, Vietnam
42 Ta Quang Buu street, Hai Ba Trung District, Hanoi, Vietnam

doanhbondy@gmail.com, alexis.drogoul@gmail.com,
pierre.auger@ird.bondy.fr

Abstract. An important question in the simulation of complex systems concerns
the emergence of global behaviours and how to model them. Individual-based
models (IBM), on one hand, are designed precisely for exploring emergent phe-
nomena, but they must be simulated (sometimes extensively) in order to detect
the behaviours that could emerge at the global level. Moreover, there are no
“theories of IBM” that would allow modellers to make predictions about the
long-term emerging behaviours they can observe. On the other hand, equation-
based models (EBM), while not exploring the same causes of emergence, repre-
sent a useful tool for making predictions about global emerging behaviours of a
system, especially in the long term. In this paper, we will explore the methodo-
logical issues that arise when attempting to derive an IBM from an existing EBM
model in population dynamics, dedicated to exploring the dynamics of two com-
peting populations in a “two-patch” environment.

Keywords: Individual-based models, Equation-based models, Population dy-
namics, Agent-based simulation, Complex systems.

1 Introduction

In the fields of physics, ecology, society and economics, two widely accepted model-
ing approaches coexist: equation-based models (EBM) and individual-based models
(IBM). In ecology, which will constitute our reference domain in this paper, the es-
sence of the individual-based approach is to reproduce the properties of ecological
systems by derivation of the (modeled) properties of the individuals constituting these
systems. See, for example in [17] where the author explains why ecological models
should be based on individuals; and how to build individual-based models in ecology.
Equation-based models (normally a set of differential/difference equations) have an
even longer history in ecology ([2], [5]).

Each of these two approaches has its own strengths and weaknesses (see [3], [4])
and, when it comes to modeling a complex system, the approach used depends on the

296 N.D. Nguyen, A. Drogoul, and P. Auger

purpose of the model. EBM (for example, compartment models) operate on global
laws generally, defined by the equations that apply to all members of the compart-
ments. For example, in early ecological models, the state variables (compartments) in
the models of population dynamics were often chosen as the total population densities
and the model was a set of nonlinear, coupled, ordinary differential equations or dis-
crete equations ([2], [5]). In such classical models, the individuals are assumed to be
homogenous and well mixed: they are all treated as identical. The benefit of these
simple EBM is that they can be handled analytically. However, given this previous
assumption, they cannot be very realistic. By contrast, IBM can readily include het-
erogeneity in the attributes and behaviors of the individuals, in the network of their
interactions, and even in the dynamics of the environment. Individual-based models
(and especially agent-based models) are much more realistic with respect to the data
available in the field, but they are arguably more difficult to calibrate (as the number
of their parameters is usually larger) and the modelers can only rely on repeated simu-
lations to interpret their dynamics.

In recent years, some “more realistic” EBM have been developed, which are aimed
at taking different categories of individuals into account. These EBM involve a large
number of variables and are in general difficult to handle analytically. However, in
most cases, it is possible to consider different time scales: a fast one for processes
operating at the individual level; and a slow one at the levels of the population and the
community. It is then possible to use the “variables aggregation” method, deriving a
reduced model which governs a few global variables at the slow time scale while tak-
ing into account all the processes going on at the individual level [9]. In most cases,
this “aggregated” model is simple enough to allow for a complete study. Furthermore,
this reduced model can be used to make predictions about the dynamics of the initial
complete model. Interesting examples of EBM in which different categories of indi-
viduals were considered, and for which aggregation methods were used successfully
to proceed to analysis of the EBM can be found in both population dynamics [1] and
in prey-predator models ([7], [9], [10]).

The central question of all these modelling techniques concerns the emergence of
global behaviours: how to handle and understand these behaviours using a model? In
IBM, multiple repeated simulations and a thorough exploration of the parameters’
space are the key to finding behaviours emerging at the global level. Yet, even when
they have been observed, there is nothing in the model allowing one to make predic-
tions about emerging behaviours that might be observed for different datasets. There
are no general theories linking the knowledge of the individuals’ rules to the emer-
gence of a global property. On the contrary, particularly in the EBM mentioned
above, the “aggregated” model is an invaluable tool to make predictions about possi-
ble emerging behaviours of the system at a global level and in the long-term. Both
IBM and EBM can be seen as different modelling approaches addressing the same
problem of emergence of global properties using different assumptions and different
knowledge about the real system. Each approach answers different, yet complemen-
tary, questions. While IBM can help in exploring and explaining the local causes of
global phenomena, EBM are useful for predicting their long-term evolution without
having to explore them through simulated experiments. Therefore, it is of primary
importance, in many domains, to be able to couple these two techniques when study-
ing complex systems. This leads to some difficult questions: how do we compare the

 Methodological Steps and Issues When Deriving IBM 297

emerging properties obtained by IBM and EBM for related cases? How can we make
sure that both models obtain the same results? For example, will the EBM will re-
main useful in predicting the behavior of the IBM? Will the IBM produce compatible
global dynamics? We claim, in this paper, that most of these questions actually per-
tain to the construction of the two types of models and can be partially answered by a
careful methodological approach to the design of “compatible” individual-based mod-
els given an existing equation-based one and vice-versa.

In the paper we address the first part of this issue by detailing the steps and issues
involved in building individual-based models from equation-based ones. We base our
proposal on a case-study in population dynamics, namely, a new type of competition
model. In section 2, we begin by briefly introducing the reader to the existing litera-
ture on mathematical competition models, their outcomes and problems. We then pro-
pose a more realistic model by introducing fast density-independent migration as a
possibility to overcome the previous limitations. In section 3, we address the question
of how to methodologically proceed from an equation-based model to a “compatible”
individual-based one. We present how we have applied this methodology to our case
study in section 4, and some preliminary experimental results in section 5. Finally,
conclusion and discussion are summarized in section 6.

2 Case Study

2.1 Classical Competition Model: Principle Competitive Exclusion

The Interspecific Competition Model is a pioneering work of Lotka and Volterra in
the beginning of twentieth century [5]. The classical model is time-continuous, deter-
ministic and is given by the next two equations:

1 , , 1, 2,ji i
i i ij

i i

NdN N
r N b i j i j

dt K K

⎛ ⎞
= − − = ≠⎜ ⎟

⎝ ⎠
 (1)

where (), 1,2iN t i = are total densities of species i at time t ; , 1,2ir i = are growth

rates; , 1,2iK i = are carrying capacities of each species. , , 1,2,ijb i j i j= ≠ are

interspecific competitive coefficients representing the negative effect of species j on

the growth of species i .
To reduce the number of parameters, it is usual to nondimensionalize the previous

model by changing variables and parameters as follows:

; , , 1,2,ji
i ij ij

i i

KN
u a b i j i j

K K
= = = ≠ (2)

Under these changes, equations (1) become:

()1 , , 1, 2,i
i i i ij j

du
ru u a u i j i j

dt
= − − = ≠ (3)

298 N.D. Nguyen, A. Drogoul, and P. Auger

Whenever intra-specific competition is stronger than inter-specific competition

(ija <1) there is coexistence, otherwise one of species will out-compete the other (see

[5]). These predictions are massively corroborated by experience and observation.
This is a well-known result, also called the “competitive exclusion principle”: to co-
exist, species must differ in their resource use; otherwise one of them ends up extinct.
However, recent experimental data show that coexistence is even possible for two or
more species that are locally impermanent ([16]). Motivated by this challenge to clas-
sical competition theory, many authors proposed models which predict the role of
dispersal/migration in the dynamics ([11], [12]).

2.2 Presentation of Our Model of Competition in a Two-Patch Environment

We consider an EBM, which is introduced and detailed in [6] to present a competition
model in which two species compete for a common resource in an environment di-
vided into two patches. We assume that migration between the two patches is fast in
comparison to local population growth and mortality. We note population density of

species 1 on patch 1 (11n), species 1 on patch 2 (12n), species 2 on patch 1 (21n) and

species 2 on patch 2 (22n). Time evolution of species densities on each patch is as-
sumed to follow the classical Lotka-Volterra interspecific competition model that we
recalled in the previous section.

The flow per unit of time of individuals of species 1 which migrate from patch 1 to

patch 2 is 11kn , and from patch 2 to patch 1, 12kn . Similarly, the flow of individuals

of species 2 which migrate from patch 1 to patch 2 is 21mn , and from patch 2 to patch

1, 22mn (, , ,k k m m are constant and positive migration rates). Because we have

assumed that migration is fast in comparison to local growth and mortality on each
patch, in the EBM we introduce a small positive parameter ε , which represents the
ratio between the two time scales. Therefore, our EBM is a set of four ordinary differ-
ential equations as follows:

()

()

()

()

11 11 21
12 11 11 11 121

11 11

12 12 22
11 12 12 12 122

12 12

21 21 11
22 21 21 21 211

21 21

22 22 12
21 22 22 22 212

22 22

1

1

1

1

dn n n
kn kn r n a

d K K

dn n n
kn kn r n a

d K K

dn n n
mn mn r n a

d K K

dn n n
mn mn r n a

d K K

ε
τ

ε
τ

ε
τ

ε
τ

⎛ ⎞
= − + − −⎜ ⎟

⎝ ⎠
⎛ ⎞

= − + − −⎜ ⎟
⎝ ⎠
⎛ ⎞

= − + − −⎜ ⎟
⎝ ⎠
⎛ ⎞

= − + − −⎜ ⎟
⎝ ⎠

(4)

This model can be analyzed using mathematical perturbation techniques, which are
not presented here. The analysis of this model showed that under some conditions, if
one of the two species out-competes the other one in both patches, the two species
could coexist. Also, that the model shows that it is even possible that the dominating
species is out-competed globally. In other words, for specific migration rates, a

 Methodological Steps and Issues When Deriving IBM 299

species that is locally out-competed in both patches can coexist together with or even
out-compete the dominating species. This counter-intuitive result shows the impor-
tance of short-term migration strategies on the issue of competition. It is a good ex-
ample of a long-term emerging property predicted by a deterministic EBM and, for
this reason, a good candidate for our purpose. In the next section, we explore how to
build an IBM that can be related to the model presented above.

3 Methodology

There are many alternative ways for “distributing” an EBM into related IBMs. An
IBM consists of (at least) a set of agents in an environment, with (at least) some indi-
vidual processes and attributes attached to them (in order, for instance, to give birth,
die, move, consume resources or perceive their local environment). Moreover, the
environment can have its own dynamics. The process can then be completely bottom-
up: by designing an IBM with the minimum set of hypotheses (minimal behaviors,
few attributes) and then progressively adding individual properties in order to make
similar phenomena emerge from it or to obtain comparable numerical results in some
parameters configurations. It can also be top-down, by progressively distributing each
part of the equation into individual parameters/behaviors of an initially “blank” IBM.
Our methodological approach is closer to the second one: basically, we consider the
EBM as a “central controller” of the different IBMs that can be produced and we pro-
gressively distribute its control, one step at a time, carefully examining which hy-
potheses and decisions to make at each step, until we don’t have any global equations
left, but only individual properties.

3.1 First Step: A “Hybrid” Spatialized Model

The first step of our methodology is to build a hybrid model, that is, a model with a
set of agents, situated in an environment with a certain topology, but where the agents
remain entirely governed by the global equations and parameters of the EBM: they do
not possess nor use individual attributes or behaviors. Building such a model allows
us to examine, apart from the following ones, the question of the spatialization of the
EBM, which is probably the most difficult part of the process. Choosing a space, or
an environment, implies making fundamental choices that will affect the dynamics
and possibilities of all the agents. Several questions are raised in this first step:

- The question of the topology of the environment
- The question of its boundaries
- The question of its nature (discrete, continuous, etc)
- The question of the perception it can offer to the agents, and so on.

Each of these choices is then experimented against the original EBM (non-
spatialized) for key configurations of parameters and we rank them with respect to
their adequation with its dynamics.

3.2 Following Steps

Next, one by one, we remove the IBM’s dependency upon the global parameters by
distributing them in the new (or existing) agents’ attributes and behaviors (or a

300 N.D. Nguyen, A. Drogoul, and P. Auger

combination of environmental and individual attributes and behaviors). Each of these
“distributions” is once again tested and validated with respect to its adequacy within
the EBM. The order in which the parameters are distributed may be important (in fact,
the parameters that are chosen first will probably constrain the following possibili-
ties). There may well be several iterations needed between the hybrid model and the
more individualized ones.

Fig. 1. The different paths between the initial EBM model and IBMs related to it. Intermediate
models are hybrid IBMs in the sense that they do possess a double nature: part of their dynam-
ics is governed by global equations. The result of this methodological process is a set of “com-
patible” IBMs that exhibit emergent properties similar to those described by the EBM.

Each step consists of:

(1) Building several models related to the hypotheses we take,
(2) Exploring their dynamics and “validate” it with respect to the EBM,
(3) Choosing the best that fit,
(4) Passing to another parameter.

4 Instantiation on the Case Study

4.1 Experimental Environment

In this section, we will show how we applied the methodology presented above to our
case study. We used the Netlogo package to write and simulate different models. We
chose Netlogo because of its multi-agent programming language and integrated mod-
eling environment--which taken together make for easy model building. NetLogo also
comes with a module called BehaviorSpace that eases the process of exploration of
emergent phenomena through an automated exploration of the model’s parameters
space. Finally, NetLogo allows for a side-by-side comparison of EBM and IBMs,
since both representations (system dynamics and agent-based) are available for pro-
gramming hybrid models.

 Methodological Steps and Issues When Deriving IBM 301

4.2 Hybrid Model: Spatialization of the EBM and Patches

Choosing a space, or an environment, implies making fundamental choices that will
affect the dynamics and possibilities of all the agents. The different possible environ-
ments available to the agents can be classified by their properties: its topology, its
boundaries, its nature (discrete, continuous, etc.), the perception it can offer to the
agents, and so on. We will see how we have chosen to spatialize the “two patches”
environment of the EBM.

Patches
Introducing an “environment for agents” means introducing: spatial configurations,
frontiers, movement, perception, density, distance, and perhaps resources available to
the agents—in effect, all the things that are not detailed in the EBM and for which we
must make choices. In this first step, we create a set of agents provided with basic and
random spatial behaviors (i.e. they move randomly) whose demography is entirely
governed by global equations controlling growth and mortality. Then, we build sev-
eral models related to the way we choose to “spatialize” the two patches. We can
build patches with only one boundary (with/without wraps) (see Fig.2a and Fig.2b) or
with many boundaries (with/without wraps) (see Fig.2c and Fig.2d).

Fig. 2. a) and b): probability for migration is small; c) : probability for migration is 50%;
d): probability for migration is random

These spatial configurations will strongly impact the probability and speed of the
migrations between the two patches. With only one boundary, as in Fig. 2a and
Fig. 2b, the probability for individuals to migrate from one patch to another is very
small (they can only migrate when they are situated on the boundary). This does not
really fit the EBM dynamics, since migration within it is considered “fast” compared
to growth and mortality. Dividing patches, as in Fig. 2c, give a probability of 50% for
individuals to migrate from one patch to another. This appears to be a better choice, as
individuals have more possibilities to migrate from a patch to another. However, a set

302 N.D. Nguyen, A. Drogoul, and P. Auger

of simulations reveals that after some time, the densities of species in both patches are
equal--whatever the initial distribution--which does not fit with the results of the
EBM. For example, in EBM, the proportion of densities of species 1 on patch 1 and
patch 2 is equal to /k k . In Fig2d, we choose patches randomly. This choice allows
individuals to migrate easily. And the proportion of densities of species on patch 1
and patch 2 is, in general, not equal to 1. Thus, it appears to be a good candidate for
the spatial configuration of the hybrid model. However, each patch in the EBM has its
own carrying capacities. To translate this environment-dependent parameter into this
spatial configuration, we introduce a new parameter, called “food”, possessed by each
of the discrete places of the environment and that can be perceived (and consumed) by
the agents. This parameter will be connected with the other processes in the following
steps.

4.3 Distribution of the Movement/Migration Processes

During this first step, we chose to distribute the parameters of the movement / migra-
tion processes. In the EBM, migration rates per capita of species are constant, i.e.,
they represent a density-independent migration. Many questions arise when trying to
remove global parameters and replace them with individual ones: for instance, is it
enough just to endow each individual with a random movement/migration procedure?
Are there connections between patches and movement/migration procedures? How
can we interpret fast migration of the species?

Since our interest is to study the effect of fast migration on the emergent phenome-
non of competitive coexistence, the movement/migration processes in the IBM should
show their influence on the evolution toward coexistence. They should be fast in
comparison to growth and mortality like in the EBM. To make the process faster than
the other ones, we introduced a “step” to count the time between two events. The time
between two events in the movement/migration process should be a lot shorter than
the interval between the birth/death processes (expressing the fact that the agents have
a lifetime and a reproduction rate).

The simulations of this hybrid model give us a set of distributions of individuals in
the environment. We validate these distributions with respect to their adequacy within
the EBM, and then we choose the best fit.

4.4 Distribution of the Birth/Death and Competition Processes

Now, we will distribute the parameters for the birth/death and competition processes.
How do we convert the growth and mortality parts of the equation (4) into probabilis-
tic rules for individual reproduction and death? How can we express competition at
the individual level? Which new parameters in the IBM can correspond to these
global parameters?

To convert the growth and mortality parts of the equation (4) into probabilistic
rules for individual reproduction/death, we proceed as follows: Firstly, we return to
the parts of the equation (4) that concern the growth and mortality of the species.

 Methodological Steps and Issues When Deriving IBM 303

1

1

jiii ii
ii ii iji

ii ii

ij ij jj
ij ij ijj

ij ij

ndn n
r n a

d K K

dn n n
r n a

d K K

ε
τ

ε
τ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠

 (5)

where , 1, 2,i j i j= ≠ .

This continuous equation can be replaced, within the limit of very large popula-
tions, by a discrete version: where time is a discrete variable, and whose parameters
should be interpreted as those in equations (5) multiplied by the time interval between
generations:

() () ()

() () () () ()

(1) () 1

1 1

jiii
ii ii ii ii iji

ii ii

ij jj
ij ij ij ij ijj

ij ij

nn
n n r n a

K K

n n
n n r n a

K K

ττ
τ τ ε τ

τ τ
τ τ ε τ

⎛ ⎞
+ = + − −⎜ ⎟

⎝ ⎠
⎛ ⎞

+ = + − −⎜ ⎟⎜ ⎟
⎝ ⎠

 (6)

Both versions (discrete and continuous) have the same critical points and stability

properties. From equation (6), it is easy to see that the growth rates iir , ijr represent

reproducing probabilities; extra-specific competition terms
() ()22

, jj jjii ii

ii jj

r nr n

K K

ε τε τ

and inter-specific competition terms
() ()2 2

,ij ij ji ji

ij ji

r n r n

K K

ε τ ε τ
can be interpreted

as a death process giving death probabilities
() ()

, jj jjii ii

ii jj

r nr n

K K

ε τε τ
 and

() ()
,ij ij ji ji

ij ji

r n r n

K K

ε τ ε τ
, respectively. However, it is not easy to calculate these prob-

abilities in stochastic processes like the ones present in the IBM.
To overcome this problem, we introduce a new parameter called “energy” for the

agents, whose dynamics is precisely governed by the translation of these processes at
the individual level. At the beginning, each individual has its own (randomly chosen)
level of energy and gains more energy over time as it eats food. They loose some energy
when they move and when they meet other individuals because of competition (this
corresponds, with different values, to intra-specific and inter-specific competitions).
Finally, an individual dies when its energy falls to zero. Introducing this parameters
means introducing a whole new set of other parameters related to consumption (how
much food does an individual consume from its environment?), metabolism (how much

304 N.D. Nguyen, A. Drogoul, and P. Auger

of its energy does it lose each step?), competition, etc. The parameters space of the
IBM, already large after the first step of spatialization, becomes larger and more diffi-
cult to explore entirely.

5 Experimental Results and Comparisons

The EBM consists of two dynamical parts: at a slow time scale, a classical competi-
tion dynamic and at fast time scale, the dynamic of migration. Thus, without migra-
tion, EBM has two separatrix classical competition dynamics in two local patches,
i.e., whenever intra-specific competition is stronger than inter-specific competition,
there can be coexistence, otherwise one of the species out-competes the other.

Fig. 3. a) and b): locally species1 out-compete species2 and coexistence globally; c) and d):
locally species1 out-compete species2 and species2 out-compete species1 globally

In figure 3a) and 3b), we show the same result as ones in the EMB: without migra-
tion, species2 get extinct (figure 3a)) while species1 tend to the carrying capacities
(figure 3b)). In certain parameter configurations, interesting results are predicted by
the EBM: species1 out-competes species2 locally (i.e. in every patch) but, thanks to
migration, globally, we obtain an opposite result, i.e., species1 is out-competed by
species2. For the same configurations, in the IBM, we also have the same result as
seen in figure 3c) and 3d).

6 Conclusion and Discussion

We have presented the first steps towards a methodology for building individual-
based models that can be related to existing equation-based models. Our approach is
mainly “top-down”, i.e., we progressively distribute each part of the equation into
individual parameters/behaviors.

 Methodological Steps and Issues When Deriving IBM 305

An example of this approach has been presented on a specific case-study and we
have shown that, for certain configurations of parameters, the two models produce
similar emerging properties (for instance, the counter-intuitive disappearance of the
dominating species when migration rates are high), which can be interpreted as a first
validation of our choices.

Of course, there exists an infinity of totally “artificial” IBMs that can mimic the
curves obtained in an EBM and we are aware that, without any other constraints, other
methodological steps could lead to similarly interesting results. However, by choosing
(1) to first spatialize the model and carefully study the influence of the spatial con-
figurations than can be chosen, then (2) to distribute, one at a time, the global parame-
ters into individual parameters that can be related, under some conditions, to attributes
existing in “real individuals” (i.e., metabolism, average lifetime, local perception of
others, consumption of resources, etc.), we are confident that our methodology will
enable us to address real ecological phenomena, where, for instance, only field data
about the behaviors and biological attributes of individuals are available. In that case,
and if we are able to build an IBM model calibrated with these field data, the work we
have done will allow us to draw, much more easily than by repeated simulations,
global predictions about this phenomenon (by using the related EBM).

References

1. Dubreuil, E., Auger, P., Gaillard, J.M., Khaladi, M.: Effects of aggressive behaviour on
age structured population dynamics. Ecological Modelling 193, 777–786 (2006)

2. Edelstein-Keshet, L.: Mathematical models in biology. Random house, New York (1989)
3. Fahse, L., Wissel, C., Grimm, V.: Reconciling classical and individual-based approaches

in theoretical population ecology: a protocol for extracting population parameters from
individual-based models. American Naturalist 152, 838–852 (1998)

4. Georiy, V.B., Goedecke, M.D., Yu, J.F., Epstein, S.M.: A hybrid epidemic model: Com-
bining the advantages of agent-based and equation-based approaches. In: Proceeding of the
2007 Winter Simulation Conference (2007)

5. Murray, J.: Mathematical Biology. Springer, Heidelberg (1989)
6. Nguyen, N.D., Auger, P., de la Parra, R.B.: Effects of fast migrations on competitive coex-

istence (2008)
7. Auger, P., Pontier, D.: Fast Game Theory Coupled to Slow Population Dynamics: The case

of Domestic Cat Populations. Mathematical Biosciences 148, 65–82 (1998)
8. Auger, P., Bravo de la Parra, R., Morand, S., Sanchez, E.: A predator-prey model with

predators using hawk and dove tactics. Mathematical Biosciences 177, 185–200 (2002)
9. Auger, P., Bravo de la Parra, R., Poggiale, J.C., Sánchez, E., Nguyen Huu, T.: Aggregation

of variables and applications to population dynamics. In: Magal, P., Ruan, S. (eds.) Struc-
tured Population Models in Biology and Epidemiology. Springer, Heidelberg (2008)

10. Auger, P., Kooi, B., Bravo de la Parra, R., Poggiale, J.-C.: Bifurcation Analysis of a Preda-
tor-prey Model with Predators using Hawk and Dove Tactics. Journal of Theoretical Biol-
ogy 238, 597–607 (2006)

11. Amarasekare, N.R.M.: Spatical heternogeneity Source-Sink Dynamics and the Local coex-
istence of competing species. American Naturalist 158(6) (2001)

12. Amarasekare, P.: The role of density-dependent dispersal in source-sink dynamics. Journal
of Theoretical Biology 226, 159–168 (2004)

306 N.D. Nguyen, A. Drogoul, and P. Auger

13. Laubenbacher, R., Jarrah, A.S., Mortveit, H., Ravi, S.S.: A mathematical formalism for
agent-based modeling, arXiv:08.01.0249v1 [cs. MA] (2007)

14. Law, R., Dieckmann, U.: Moment approximations of individual-based models (1999),
http://www.iiasa.ac.at/Admin/PUB/Documents/IR-99-043.pdf

15. Hinckley, S., Hermann, A.J., Megrey, B.A.: Development of a spatially explicit, individ-
ual-based model of marine fish early life history. Marine Ecology Progress Series 139, 47–
68 (1996)

16. Tilman, D.: Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16
(1994)

17. Grimm, V., Steven, R.F.: Individual-based Modeling and Ecology. Princeton University
Press, Princeton (2005)

18. Grim, V.: A standard protocol for describing individual-based and agents-based model.
Ecological Modelling 198, 115–126 (2006)

Abstraction of Agent Cooperation in Agent
Oriented Programming Language

Nguyen Tuan Duc and Ikuo Takeuchi

The University of Tokyo, Japan
duc@nue.ci.i.u-tokyo.ac.jp, nue@nue.org

Abstract. Collective operation is a concept of parallel programming in
which many processes participate in an operation. Since collective opera-
tions are suitable for modeling the coordination of many processes, they
can be used to model cooperating agents in a multiagent system. In this
paper, we propose an agent oriented programming language that exploits
collective operations to abstract the cooperating process of agents. We
also present a method for implementing collective operations while main-
taining the autonomous computational model of agent. Our experiment
shows that our language and cooperation model have many advantages
in developing multiagent systems.. . .

1 Introduction

In multiagent system (MAS), agents need to exchange useful information with
each other in order to reach an agreement or collaborate for achieving a goal. The
process of communicating and exchanging knowledge is known as cooperation.
Cooperation is a crucial requirement in MAS because without cooperation the
system is simply a set of separated agents and has no ability of collaborating to
reach the goal.

On the other hand, in agent oriented programming (AOP), a new program-
ming paradigm proposed by Y. Shoham [1], agent is modeled as an autonomous,
reactive and pro-active entity. Because of this autonomous computational model,
the integration of autonomous agent and cooperating agent is not simple. Agents
need to be autonomous, however, they also need to collaborate in order to achieve
the goals.

In this paper, we propose an agent oriented programming language that sup-
ports the cooperation of agents. The language uses the concept of collective oper-
ation in parallel distributed programming to abstract the cooperating process of
agents. Moreover, it maintains the autonomy of agent and provides constructs
for describing agent’s mental state (i.e., belief, desire, intention [3]). We have
implemented a framework called Yaccai (Yet Another Concurrent Cooperating
Agent Infrastructure) to support the execution of multiagent systems written in
our language. The communication model underlying our language’s execution
environment ensures the autonomy of each agent while providing full support
for message passing. Our experiment shows that by using collective operations,

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 307–314, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

308 N.T. Duc and I. Takeuchi

global knowledge, an important element in multiagent systems, can be easily
derived.

The rest of this paper is organized as follows. Section 2 compares our system
with existing AOP languages and cooperation models. Section 3 presents our
language design and language constructs for abstraction of agent cooperation
using collective operations. Section 4 describes the execution model that supports
the implementation of collective operations. We discuss about the application of
collective operations in Section 5. Section 6 shows empirical results for evaluating
the system. Finally, Section 7 discusses about future work and concludes.

2 Related Work

Research on AOP language has focused on how an autonomous agent can be
described in the language, that is, how to express the mental state (the intra-
agent aspects) of an agent efficiently and easily using constructs provided by the
language [1][4][2]. However, existing agent oriented programming languages do
not concentrate on the communication model of agents and do not pay enough
attention to abstraction of agent cooperation despite the fact that cooperation
is a very important issue in MAS.

Cooperation models such as joint-intentions model [5] or teamwork [7] allow
the description of global goal for the entire multiagent system and coordination
scheme is automatically derived from the team’s goal. But it is difficult to ensure
the autonomy of each agent because all agents have the same goal and mental
state.

Michael Schumacher proposed a model for inter-agent coordination, called
ECM [8] and a programming language to specify agent hierarchy. Agents par-
ticipate in many agent societies, called “blops”. Each blop is a group of agents,
in which agents can easily communicate with each other and even broadcast
messages when they want. However, ECM and its languages do not support
the description of mental state of agent, agent itself needed to be specified by
another programming language.

Our system combines the advantages of agent oriented programming lan-
guages and the coordination models mentioned above. The system ensures the
autonomy of agents and provides constructs for description of cooperation, com-
munication between agents.

3 Language Design and Abstraction of Agent
Cooperation

3.1 Constructs for Modeling Mental State and Reasoning Cycle

Our language is agent oriented because it supports the description of mental
state of agents and automatically generates reasoning cycle (the cycle of sense
- reasoning - act). The language provides constructs to define classes and agent

Abstraction of Agent Cooperation in AOP Language 309

classes like in normal object oriented languages. Each agent has its own inde-
pendent integrated belief-base to avoid the overhead of synchronizing common
belief-base and ensure the autonomy of the agent. Belief-base query/update op-
erations are integrated in the language as language constructs that are similar
to LINQ [9].

1 agentclass HelloAgent {
2 public m_comm;
3 public function HelloAgent() {
4 m_comm = Environment.GetCommunicator(
5 "World", MsgListener);
6 }
7 public plan MsgListener(msg) {
8 id = -1;
9 match msg.Value with {
10 "Hello from", @{id}, "at", @{addr} -> {
11 belief fact new {rank=id, host=addr};
12 }
13 }
14 }
15 public plan act() {
16 myRank = Environment.GetRank();
17 m_comm.Bcast("Hello from " + myRank +
18 " at " + Environment.Hostname());
19 }
20 }
21
22 class SimpleMAS {
23 public static function Main() {
24 a1 = create HelloAgent() at "localhost";
25 a2 = create HelloAgent() at "somehost.com";
26 }
27 }

Fig. 1. A simple multiagent system definition Fig. 2. Communication model

Reasoning cycle of agent is automatically realized when agent program defines
a special plan with name “act”. Fig. 1 shows an example of a multiagent system
definition in our language. Once the agent is created, the constructor will be
called and then the plan “act” will automatically be executed. Each agent in the
example simply broadcasts a “Hello” message and its identifier (rank) to others.
When an agent received “Hello” message, it stores the host address of the sender
into belief-base. The main program (the SimpleMAS class) uses create statement
to create agents at desired host. Complete grammar of the language is available
at the Yaccai’s homepage1.

3.2 Abstraction of Agent Cooperation

We present a new approach to model the cooperating process of agents, that
is, using collective operations to abstract cooperation. Collective operations are
operations that involve in many processes and data of these processes of execu-
tion. For instance, broadcasting a message to all agents in a group is a collective

1 http://www.nue.ci.i.u-tokyo.ac.jp/%7Educ/yaccai

310 N.T. Duc and I. Takeuchi

operation because all agents are affected by the operation. MPI[6], a famous
parallel distributed programming interface, defines many collective operations
such as barrier, broadcast, gather, reduce, ... to support synchronization and
cooperation of processes.

We use the concept of “communicator” in MPI (that is similar to “blob” in
ECM [8]) to represent agent group, agent can freely participate into a group by
invoking the following method:

comm = Environment.GetCommunicator("comm_name", listenerPlan);

This method will get the communicator named “comm name” and set “listen-
erPlan” as the message processing plan for this communicator. Every message
comes to this agent from the communicator will be passed to listenerPlan to
be processed.

An agent can leave from a communicator by invoking the “Leave” method on
the communicator:

comm.Leave();

Messages come from this communicator will not be passed to “listenerPlan”
anymore.

Agents form group of agents when they participate in the same communicator
(by invoking the method GetCommunicatorwith the same communicator name).
The concept of “communicator” in our language is the same as in MPI but
collective operations’ syntax and semantics are different. Collective operations
in MPI must be invoked in parallel by all processes that are participating in the
operation. This requirement ensures the efficiency for the execution of collective
operations but it causes difficulty in maintaining the autonomy of each process
since it requires all processes invoke the operation at the same time. In our
system, we allow collective operations to be invoked by just one agent and other
agents will automatically participate in the operations. For example, an agent
may invoke the following method to broadcast message to all agents in the same
communicator:

comm.Broadcast(message);

Table 1 shows the list of collective operations that we support.

Table 1. Collective operations

Operation Meaning Example

Barrier Synchronizing all agents in the communicator comm.Barrier(“barrier name”);
Broadcast Broadcasting message to all agents in comm. comm.Bcast(msg);
Reduce Evaluate expression at each agent and apply

operator on the result set in round-robin man-
ner

comm.Reduce(operator, expression);

Gather Evaluate expression at each agent then gather
the results to an agent

comm.Gather(expression);

Scatter Scatter the array of messages to all agents in comm comm.Scatter(array of msg);

Abstraction of Agent Cooperation in AOP Language 311

Collective operations allow agent to effectively cooperate with other agents
in the same communicator. It makes the process of deriving global information
easier. For example, an agent can get the sum of ID of all agents in the system by
invoking a reduce operation: “comm.Reduce(SUM, belief query ID);”. The ex-
pression “belief query ID” is evaluated at each agent and the results are summed
up by the operator SUM. Section 5 shows more about application of collective
operations. It is important to note that, collective operations abstract the cooper-
ation of agents, the abstraction simplifies the description of cooperating process.

4 Communication Model and Execution Environment

The execution of collective operation is not simple because it involves in all agents
while the operation is invoked by just one agent. To cope with this problem, we
use a new execution and communication model for agents as shown in Fig. 2.
Each agent is divided into two layers: the agent reasoning layer and the message
passing layer. Reasoning layer contains user’s code for the agent program while
message passing layer contains code of the execution environment (the system
provides primitives for message passing and collective operations). The former
contains exactly one thread while the later may contain several threads of exe-
cution (each agent is mapped to a process, possibly in a remote host). When the
reasoning layer’s code invokes send or broadcast method of communicator, the
message will be passed to the message passing layer of the same agent first, and
it is actually sent to destination in this layer. The message processing plan is
responsible for reactive reasoning while the main plan is place where pro-active
reasoning code could be described. By this way, programmers can easily model
autonomous agent with pro-active reasoning and reactive reasoning capabilities.

The separation of agent’s reasoning code and message passing code supports
the implementation of collective operations with different semantics from seman-
tics in normal parallel distributed programming: collective operations can be in-
voked by just one agent, not all agents in parallel because the message passing
layer does the job of passing messages independently from agent’s reasoning code.

5 Application of Collective Operations

Global knowledge is knowledge that involves in entire multiagent systems, for
instance, the minimum value of a particular property of agents. Data that is
distributed across many agents may be considered as global knowledge because
gathering of the data involves in many agents. These kinds of knowledge can be
easily obtained by using collective operations.

For example, a Vacuum Cleaner agent can know how many agents are in idle
state by invoking the following reduce operation:

comm.Reduce(Sum, (belief query idle)[0]);

where Sum is an operator of 2 operands which returns the sum of these operands.
The belief-base query expression is evaluated at each agent and returns a col-
lection (contains only one element) that is 1 if the agent in idle state and 0

312 N.T. Duc and I. Takeuchi

otherwise. The operator Sum is applied to the result set in a particular order
(the order of the application depends on the reduce algorithm, such as tree-like
or linear algorithm).

Another way to achieve the same goal is using the gather operation to gather
idle state of all agents:

comm.Gather((belief query idle)[0]);

The gather operation returns a collection contains values representing idle state
of all agents in the communicator “comm”.

6 Evaluation

In this section, we provide some experiment results to evaluate our language and
cooperation model.

We built a multiagent system for simulation of Vacuum Cleaner Robot prob-
lem. Each Vacuum Cleaner is represented as an agent whose capabilities are
move and clean. The simulation server constructs a virtual space which is a grid
of 20x30 cells; each cell contains zero or more units of dirt. Agent can only move
up, down, left or right (one step for each cycle) in the virtual space and it re-
ceives information about the current position (e.g., number of units of dirt in
the cell) from the server. The agent can only clean a unit of dirt in each cycle
by sending a “clean” command. The Vacuum Cleaner agent team is written in
our language (complete source code for the agent can be viewed at the Yaccai’s
homepage 2). A game lasts for 1000 cycles; at each cycle, the server reports the
score of the game by the following formula:

Score =
Total units of dirt cleaned

Total units of dirt
× 100 (1)

In the first experiment, we created a multiagent system which contains 3 sim-
ple agents: the agents do not cooperate with each other, they only send/receive
commands and information from the simulation server. The agents simply scan
the virtual space by moving horizontally first then go up/down one row when
they could not move in horizontal direction and change the horizontal direction
from left-right to right-left and vice versa.

In the second experiment, we created a multiagent system which contains
3 agents that cooperate using broadcast operation. The agents use the same
strategy in the first experiment to move around the virtual space. When an
agent found a cell has dirt, it will broadcast the position of the cell and the units
of dirt contained there to all other agents. When received message from other
agents, an agent will store the information into its belief-base and determine
if it should go to the cell to clean or not. When an agent successfully cleaned
a position, it also broadcasts the information to another agents. An agent will

2 http://www.nue.ci.i.u-tokyo.ac.jp/%7Educ/yaccai

http://www.nue.ci.i.u-tokyo.ac.jp/%7Educ/yaccai

Abstraction of Agent Cooperation in AOP Language 313

Table 2. Average score of 5 times of simulation

Map NoComm Bcast Reduce

map dense 32.7(±0) 24.28(±0) 32.2 (±0.3)
map sparse 75.22(±0) 90.91(±0.5) 86.6 (±0.1)

remove the dirt’s position from its belief-base when it received the clean message
from other agents.

In the third experiment, we created a multiagent system which contains 3
agents that use similar cooperation scheme to the agent in the second experiment
except that when an agent found dirt, it uses reduce operation to know the
nearest idle agent. Then it sends the information about the cell to that agent
only (not broadcast to all agents).

Table 2 shows the score for the non-communication agents, broadcast agents
and reduce agents in our experiment with two scenarios: map dense contains
large amount of dirt that broadly distributed across many cells in the virtual
space, map sparse contains large amount of dirt that comparatively concentrated
on a region in the virtual space. The experiment is carried on a cluster of 6
machines connected by Gigabit ethernet to guarantee that each agent is executed
on a separate machine. The score is the average score of 5 times of simulation
reported at the end of each simulation, the numbers after symbol ± inside the
parenthesis are standard deviations (standard deviation is very small because
we do not use any random parameter).

In map dense, the broadcast agents do not perform very well because they can
not scan entire the space to find dirt and do too many useless moves. They seem
to concentrate on a place at each time (because when received broadcast message
they often go to the dirt place if they are in idle state or when they become idle,
they will query the belief-base for the cell and go to clean). The reduce agents
have the same performance with non-communication agents because only one
agent is affected by the message when a dirt position is found. When there
are many places have dirt, the agents are busy (not in idle state) and they
will not react to messages from other agents immediately so the behavior of
the team is similar to non-communication team. In the map sparse map, the
situation is different. The broadcast team has the best performance because
they do not spend a lot of time in idle moves. They can concentrate on a dirt
place immediately when an agent found the dirt place. The reduce team also
has relatively good performance because when agents are in idle state, they will
react to messages from other agents immediately so the behavior is similar to
broadcast team. Agents team without cooperation has poor performance in this
situation because agents have to find dirt independently and do many useless
moves to scan the virtual space.

The result confirms that complex cooperation protocols may be easily de-
scribed using collective operations. In situations where cooperation becomes
very important (e.g., in the map sparse), collective operation is very effective
because it simplifies the description of cooperation of agents. Even in situations

314 N.T. Duc and I. Takeuchi

where cooperation is not important (e.g., in the map dense), the agent team uses
collective operation may also achieve good performance if it uses appropriate co-
operation scheme to reduce the risk of “over-cooperating” (i.e., too concentrated
on a region).

7 Conclusion and Future Work

We have presented a new agent oriented programming language in which agent co-
operation is highly abstracted by using collective operations. The communication
model underlying our system ensures the autonomy of agents while providing full
support for message passing and coordination. The system is therefore suitable
for developing multiagent system, in which agents are autonomously, pro-actively
and reactively taking actions while cooperating with others to achieve the goal.
We also discussed about the application of our model in deriving global knowledge
and shows the experiment result that confirms the effectiveness of our cooperation
model. We are going to implement several real-world multiagent system bench-
marks (such as RobocupSoccer or RobocupRescue agent team) to investigate the
effectiveness of the language and the communication model.

References

1. Shoham, Y.: Agent oriented programming. Artificial Intelligent 60(1), 51–92 (1993)
2. Hindriks, K.V., et al.: Architecture for Agent Programming Languages. In: Proc. of

the 14th European Conference on Artificial Intelligence (ECAI 2000) (2000)
3. Rao, A., Georgeff, M.: Modeling rational agents within a BDI architecture. In: Proc.

of the Intl. Conf. on Knowledge Representation and Reasoning KR 1991 (1991)
4. Rao, A.: AgentSpeak(L): BDI Agents speak out in a logical computable language.

In: Proc. of the 7th European Workshop on Modeling Autonomous Agents in a
Multi-Agent World (1996)

5. Jennings, N.R.: Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence 75(2), 195–240 (1995)

6. The Message Passing Interface, http://www-unix.mcs.anl.gov/mpi/
7. Pynadath, D., et al.: Toward team-oriented programming. In: Jennings, N.R. (ed.)

ATAL 1999. LNCS, vol. 1757, pp. 233–247. Springer, Heidelberg (2000)
8. Schumacher, M.: Objective coordination in multi-agent system engineering. LNCS,

vol. 2039. Springer, Heidelberg (2001)
9. The LINQ project,

http://msdn.microsoft.com/en-us/netframework/aa904594.aspx

http://www-unix.mcs.anl.gov/mpi/
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx

Knowledge Assessment: A Modal Logic Approach

Vineet Padmanabhan1,�, Guido Governatori2,��, and Subhasis Thakur2

1 Department of Computer & Information Sciences, University of Hyderabad, India
vineetcs@uohyd.ernet.in

2 School of ITEE, The University of Queensland, Brisbane, Australia
{guido,subhasis}@itee.uq.edu.au

Abstract. The possible worlds semantics is a fruitful approach used in Artifi-
cial Intelligence (AI) for both modelling as well as reasoning about knowledge in
agent systems via modal logics. In this work our main idea is not to model/reason
about knowledge but to provide a theoretical framework for knowledge assess-
ment (KA) with the help of Monatague-Scott (MS) semantics of modal logic. In
KA questions asked and answers collected are the central elements and knowl-
edge notions will be defined from these (i.e., possible states of knowledge of
subjects in a population with respect to a field of information).

Keywords: Modal & Epistemic Logics for Question Answering Systems, Ques-
tion processing, Interpretation models.

1 Introduction

Modelling and reasoning about knowledge in agent systems is an active research area
within the AI community [1,2]. It is often the case that the logical tool used to repre-
sent and reason about knowledge is that of modal logic1 with the underlying possible
worlds [3] model. There is also an interpreted system (IS) model which aims to give a
computational flavour to S5 in terms of the states of computer processes [4,1] and this
in turn makes it more suitable in one of the major application areas of knowledge rea-
soning namely Multi-Agent Systems (MAS). Recent works show that the IS Model can
also be used for the specification of cognitive attitudes other than knowledge like belief,
desire and intention (BDI) so that techniques like symbolic model checking can be used
to verify the different agent properties inherent in the specification [5]. In this paper we
deviate from the works above in the sense that our main idea is not to model/reason
about knowledge but to provide a framework for knowledge assessment using some
tools and techniques in modal logic.

To make the idea of knowledge assessment precise consider the list of questions
given in Table1. It is common practice that for assessing a student’s knowledge in el-
ementary mathematics question formats as in Table1 is presented and is followed by a
written examination. Thereafter the students answers are collected and finally the exam-
iner returns an appreciation which usually boils down to a single number or percentage.

� Corresponding author.
�� Supportd by the Australian Research Council under the Discovery Project No. DP0558854.
1 The modal logic KT45 (also called S5) is usually used to reason about knowledge.

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 315–322, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

316 V. Padmanabhan, G. Governatori, and S. Thakur

Table 1. An Excerpt of a test in Mathematics

a 2×378 = ????
b 322÷7 = ????
c 14.7×100 = ????
d 6442÷16 = ????
e 58.7×0.94 = ????

As pointed out in [6] such a testing procedure provides limited information because
provided that a student gives correct answers to questions a, c and e it only shows a
numerical appreciation (60 percent) of his/her work. What it hides is the information
related to the student’s knowledge/mastery in performing multiplication and deficiency
in division operation. Moreover, the responses (answers) also indicate that there is some
dependency among the questions. For instance, question e (a multidigit multiplication)
in table 1 relies on elementary multiplication tested in question a. Consequently from a
correct answer to question e we should infer a correct answer to question a. Obtaining
and exploiting the most precise information from an assesment procedure is particulary
needed in programmed courses as it reveals the weakness as well as strong points of the
student’s preparation and hence advices for further study can be inferred. Similarly any
computer assisted instruction system should entail a module for uncovering the user’s
knowledge. We take motivation for this work from the knowledge structure (KS) theory
as outlined in [6,7]. Knowledge structure theory presupposes that the knowledge of an
individual in a particular domain of knowledge can be operationalised as the solving
behaviour of that individual on a domain specific set X of problems. If the solution
result for each problem is binarily coded by true/false, then the knowledge state of an
individual in the given field of knowledge can be formally described as the subset of
problems from X he/she is capable of solving. To tackle the problem of solution de-
pendencies that can exist between problems of a certain field of knowledge KS theory
employs the concept of a surmise system. The idea is to associate each problem x ∈ X
with a family of subsets of X called clauses, with the interpretation that, if a person is
capable of solving x then he/she is capable of solving all problems in at-least one of
these elements.

In this work we describe a theoretical framework based on the possible worlds model
to capture the main ingredients of KS theory as mentioned above which in turn can be
used for Knowledge Assessment. Since our main aim is with respect to the assessment
of knowledge we need to have a definition of knowledge that can fit in with this in-
tuition. Hence, instead of defining knowledge as truth in all possible worlds, which
is the common interpretation given for knowledge models based on possible worlds
semantics, an agent’s knowledge is explicitly described at a state/(in our case with re-
spect to a question q) by a set of sets of states (set of prerequisites for the question q).
In other words, our possible worlds framework for knowledge assessment is based on
Montague-Scott (MS) semantics rather than the usual Kripke semantics.

In the comming sections we briefly discuss the knowledge structure theory along
with surmise systems and outline the technical apparatus of MS-structures. Then we
show how MS-strucutres can be used as a tool for Knowledge Assessment and conclude
the paper with a discussion.

Knowledge Assessment: A Modal Logic Approach 317

2 Knowledge Structures, Surmise Systems and MS-Models

As mentioned in the previous section a knowledge structure consists of a finite set Q to-
gether with a collection K of subsets of Q wherein the elements of Q are the questions
and the members of K are the knowledge states. For example, assume that the set of
questions in Table (1) is given for a test. Now, any student who took the test is charac-
terised by the subset of questions he/she correctly answered and this subset constitutes
his/her knowledge state. So for instance, we can have K1 = {a,b,c}, K2 = {d}, K3 =
/0 representing respectively the knowledge states corresponding to three students. What
we can infer from the knowledge states is that the first student gave correct responses
to questions a, b and c whereas the last student to none at all. Similarly one can come
up with a collection K of knowledge states representing all possible knowledge states
by observing a population of students as given in (1).

K = { /0,{a},{d},{a,b,c},{a,d,e},{b,c,d,e},
{a,b,c,d,e}} (1)

It should be noted that not any subset of Q needs to be a knowledge state as solution
dependencies could exist among the members of the set Q. Therefore K comprises of
all those subsets of Q which constitutes the set of all empirically expectable solution
patterns. Also, from (1) it can be seen that questions b and c belong exactly to the same
knowledge states, i.e., {a,b,c} and {b,c,d,e}. Hence as mentioned in [7] one can
say that b and c define the same notion. But this is not the case for questions b and e
because they are disinguished by the knowledge state {a,b,c} and this means b and
e test different skills. As pointed out above solution dependencies can exist between
problems of a certain field of knowledge. In our case question e in Table1. relies on
question a and hence from a correct response to question e we should infer a correct
response to a, i.e., we say that we surmise mastery of question a from mastery of ques-
tion e. In general we want to infer from the knowledge of one question the complete
knowledge of at least one set of questions among some list of sets. We call these sets
the clauses for the original question q. For example let Q denote the set of questions in
table 1 and ν a mapping that associates to any element q in Q a non-empty collection
ν(q) of subsets of Q as given in Figure1. Here question a has only one clause which
is that of c and question b has the empty set as its only clause. What this means is that
there is only one way to know question a which is through the acquisition of question
c while there is no prerequisite for b.

1. ν(a) = {{c}} 2. ν(b) = /0 3. ν(c) = /0
4. ν(d) = {{a,c},{b}} 5. ν(e) = {{a,b,c}}

Fig. 1. Solution dependencies for the questions in Table1

Definition 1. A surmise system on a finite set Q is a mapping ν that associates to any
element q in Q a nonempty collection ν(q) of subsets of Q and satisfies the following
conditions;

318 V. Padmanabhan, G. Governatori, and S. Thakur

1. Any clause for question q contains q
2. If q′ ∈C, with C a clause for question q, there exists some clause C′ for q′ satisfying

C′ ⊆C.
3. Any two clauses for question q are incomparable in the sense that neither is in-

cluded in the other.

We denote a surmise system by (Q,ν).

2.1 MS/Neighbourhood Semantics

Montague-Scott semantics, also known as Neighbourhood semantics is considered the
most general kind of possible worlds semantics in the sense that it is compatible with
retaining the classical truth-table semantics for the truth-functional operators. In this
section we outline the main ingredients of neighbourhood semantics needed to develop
a framework for knowledge assessment.

Definition 2. A neighbourhood model is a structure

M = 〈W,π ,ν〉

where W is a set of worlds and π(w) is a truth assignment to the primitive propositions
for each state w ∈W. Intuitively π(p) = {w1,w2} represents the fact that p is true at
w1,w2 and false at W\{w1,w2}. ν(w) is a mapping from W to sets of subsets of W,
i.e., ν : W→℘(℘(W)). 〈W,ν〉 is called a neighbourhood frame.

The basic idea of this definition is that each world w of W has associated with it a set
ν(w) of propositions that are necessary at w. Since a proposition in possible worlds se-
mantics is a subset of W2 the set of propositions necessary at w, ν(w), is a set of subsets
of w. There are no assumptions about ν except that it is a function from W→℘(℘(W))
and ν(w) may be any set of propositions including the empty set. When interpreted in
terms of knowledge in agent-systems the members of ν(w) can be considered as the
propositions an agent knows. We will talk more about this knowledge interpretation in
the next section. Inorder to state the truth conditions of a neighbourhood model we need
to take care of the definition of a truth set.

Definition 3. The truth set,||A ||M , of the formula A in the model M is the set of worlds
in M at which A is true; formally

|| A ||M = {w in M : M ,w |= A}

Definition 4. (Truth Conditions) Let w be a world in a model M = 〈W,π ,ν〉.

– M ,w |= �A⇔|| A ||M∈ ν(w)
– M ,w |= �A⇔ (W− || A ||M) ∈ ν(w)

Example 1. Let W = {a,b,c}, π(p) = {a,b},π(q) = {b,c} and ν(a) = {{b},{a,c}},
ν(b) = {{a,c},{a},{a,b}} and ν(c) = { /0,{a},{b,c}} be a neighbourhood model M
according to Definition 2. Then some of the formulae that are satisfied by M are

2 In possible worlds semantics (any kind) a proposition is identified with a set of possible worlds.

Knowledge Assessment: A Modal Logic Approach 319

M ,b |= �p (since || p ||M = {a,b} ∈ ν(b))
M ,b |= �p (since {a,b,c}− || p ||M = {a,b,c}−{a,b}= c ∈ ν(b))
M ,c |= ��p (since ||�p ||M = {b,c} ∈ ν(c))
M ,a |= ��p (since ||�p ||M = {b} ∈ ν(a))
M ,c |= �⊥ (since || ⊥ ||M = /0 ∈ ν(c))
M ,a |= �(p∧q) (since || p∧q ||M = {b} ∈ ν(a))
M ,a |= �p (since || p ||M = {a,b} ∈ ν(a))

The last two items in the above list needs special mention. Note that M ,a |= �(p∧q)
but M ,a |= �p. In the case of a relational structure if we fix the valuations of p and q it
is not possible to show that �(p∧q) is true at a but �p is false at a. The reason is that
�p is false at a forces a to have an accessible world in which p is false. There is only
one such world (c) where p is false. However, if c is accessible from a, then �(p∧ q)
will no longer be true at a (since if p is false at c then so is p∧q). The above example
shows that the axiom �(ψ ∧ϕ)→ �ψ ∧�ϕ is not valid in the case of neighbourhood
frames. In the next section we will demonstrate why such axioms need to be avoided in
th case of knowledge assessment.

3 Assessing Knowledge

In this section we show how to use the technical apparatus of Neighbourhood models
as outlined above for knowledge assessment. We write the modal connectives as K to
emphasise the knowledge aspect. Initially we do not want to bind K with any properties
but just as a replica of the modal operators.

Consider a neighbourhood model M = 〈W,π ,ν〉 where W = {a,b,c,d,e} be the
set of questions as given in Table1 and ν be as in Figure. 1. Let π be given as follows

π(∗) = {a,c}, π(÷) = {b}

By π(∗) = {a,c} we mean that multiplication is true/holds for questions a and c. For
question e this need not be the case because to solve e one needs the knowledge of both
multiplication and division. Similar argument holds in the case of π(÷) = {b}. Now we
can say that a model M and question q satisfies the knowledge of multiplication if and
only if the truth set of multiplication is in the list of sets related to question q. Formally

M ,q |= K(∗)⇔|| ∗ ||∈ ν(q) (2)

To give an example if we substitute question a from Table 1 in place of q we get

M ,a |= K(∗) (since || ∗ ||M ∈ ν(a)) (3)

because || ∗ ||= {a,c} and {a,c} ∈ ν(a). From a knowledge assessment perspective
(3) has much to offer. For instance, suppose that we have a collection K of knowledge
states as given in (1) in Section 2. where we have a set {a}. Then (3) shows the incom-
plete knowledge of a student with respect to multiplication. In other words (3) helps in
assessing a student’s knowledge in multiplication with respect to (from the viewpoint
of) the answer set provided by him/her. In this case we can assess that a correct response

320 V. Padmanabhan, G. Governatori, and S. Thakur

to question a is not enough for a student to solve (have complete knowledge of) other
questions related to multiplication. In a similar manner from (3) we can also reason
about a student’s lack of knowledge in division because

M ,a |= K(÷) (since || ÷ ||M ∈ ν(a)).

It should be kept in mind that it is possible to make the model M satisfy certain con-
ditions so as to fit in with the notion of a surmise system as outlined in the previous
section. For instance, the first item of Definition 1 generalises the reflexivity condition
for a relation and we will show later on how to give such conditions for a neighbour-
hood model M . Now, let us take d and repeat the same process. This time we can see
that

M ,d |= K(∗) (since || ∗ ||M , i.e.,{a,c} ∈ ν(d)) (4)

holds which tells us that a student who has provided the answer set d knows or have
mastered multiplication. From (4) we can also infer

M ,d |= K(÷) (since || ÷ ||M , i.e,{b} ∈ ν(d)) (5)

which shows that a student who has provided the answer set d knows division. At the
same time from (4) and (5) we get

M ,d |= K(∗∧÷) (|| ∗∧÷ ||M , i.e,{a,b,c} ∈ ν(d)) (6)

which tells us that from answer set d one cannot assess the knowledge of both multi-
plication and division. For instance, from Figure1 it can be seen that question d can be
mastered along two different approaches, one implying the mastery of the sole question
b, the other requiring the mastering of questions a and c. In other words, according
to our model, for a student to solve question d he/she needs to know multiplication or
division and not both. (6) shows exactly this and more in the sense that it avoids the
problem of logical omniscience (LO)3 [3,8] which plague knowledge models based on
possible worlds. Now let us consider e;

M ,e |= K(∗∧÷) (|| ∗∧÷ ||M , i.e,{a,b,c} ∈ ν(e)) (7)

(7) shows the mastery/knowledge of a student in multiplication and division with re-
spect to question e or in other words a student who has provided the answer set e
knows both multiplication and division. There are two main reasons for having such
an assessment procedure; 1) It is usually the case that in an oral examination teach-
ers strongly reduce the number of questions by making inferences from the collected
answers and 2) because of 1 they can specifically select the next question. These two
features also show the superior efficiency of oral testing over written testing. Any good
automated procedure should encompass these features and exploit them to minimise the
test duration. Our aim in this paper is to give a theoretical model based on modal logic
to account for the above mentioned features. Of course there are other models (prob-
abilistic models) that can account for such an assessment proceudre but the main idea
here is to show the usability of modal logic as a tool for knowledge assessment.

3 LO usually refers to a family of related closure conditions. In the case of (6) we avoid closure
under conjunction, i.e., the condition that if an agent i knows both ϕ and ψ , then agent i knows
ϕ ∧ψ .

Knowledge Assessment: A Modal Logic Approach 321

3.1 Models Satisfying Certain Conditions

So far we have been trying to build a framework based on modal logic for knowledge
assessment so as to decide what formulas should be valid for the knowledge reading
of � (i.e. when we interpret � to be a modality representing knowledge). We did not
impose any constraints on the model M . Since we want to relate our knowledge as-
sessment model with that of a surmise system we need to make sure that our model
satisfies conditions given in Definition1. In this section we show how to achieve this.
The following conditions can be given for items 1, 2 and 3 of Definition1.

1. X ∈ ν(w)⇒ w ∈ X (reflexivity condition)
2. X ∈ ν(w)⇒ {w′ ∈W : X ∈ ν(w′)} ∈ ν(w) (transitivity condition)
3. ∀X ,Y ∈ ν(w),X = Y ⇒ ∃x,y : x ∈ X ,x /∈ Y,y ∈ Y,y /∈ X (Any two clauses are in-

comparable)

It should be kept in mind that given a function ν : W→℘(W) it is always possible to
define a function f :℘(W)→℘(W) such that f (X) = {w : X ∈ ν(w)}. In this manner
we can define every function ν of Definition 2 in terms of a function like f as follows;

w ∈ f (X)⇔ X ∈ ν(w) (8)

Hence truth conditions for �A in terms of f can be given as

M ,w |= �A⇔|| A ||M∈ ν(w)⇔ w ∈ f (|| A ||M), i.e.,
|| �A ||M = f (|| A ||M)

The corresponding model conditions using (8) for reflexivity (f (X)⊆ X) and transitiv-
ity (f (X) ⊆ f (f (X)) is much more concise and easy to use. This alternate character-
isation of ν-models is nothing more than a notational variant and should not be seen
as a new model. A question which naturally comes to mind then is why not define
conditions like reflexivity, transitivity etc. before hand on the set of questions so as to
have a relational model (A binary relation on the set of questions so as to formalise the
surmise idea). rather than constructing a surmise system as discussed in the previous
sections. One reason for not adopting a relational model as pointed out in [6] is that the
knowledge structure associated to a surmise relation is closed under intersection and
union whereas that of a surmise system is closed under union alone. Put in other words,
if two students characterised by their knowledge states K and K′ meet and share what
they know they will both end with the union K ∪K′ as their common knowledge state.
In the case of intersection similar motivation doesn’t exist and the only argument that
could be given is that the two students would decide to retain their common knowledge,
i.e., K ∩K′ which according to [6] is weak because cognitive development is consid-
ered to be cumulative over time. And from a modal logic point of view we can avoid
the problem of LO which as pointed out earlier is not a good property to have as far as
knowledge assessment is concerned. Also, in the relational model the accessibility re-
lation must be given before defining satisfiability in a world because the satisfiability of
a formula containing a modal operator is defined in terms of the accessibility relation.
We can avoid this using the MS-models.

322 V. Padmanabhan, G. Governatori, and S. Thakur

4 Discussion

We have outlined a modal logic based approach for knowledge assessment where ques-
tions asked and answers collected form the main ingredients and knowledge notions are
defined from these. Our approach is different when compared to other modal logic the-
ories of knowledge in Artificial Intelligence where modelling/reasoning about knowl-
edge is the main focal area. The current work is in the preliminary stages and lot needs
to be done. We have only outlined the syntax and semantics of our framework and have
completely neglected the multi-agent aspect. What we would like to have ideally is to
efficiently uncover, given a student in the population, which member of K represents
his/her knowledge state. From a multi-agent perspective we can think of modifying ν
to νi where i represents an agent and assign the propositions he/she knows. But in the
case of knowledge assessment it is not that simple because we cannot assign randomly
the questions a particular agent/student knows as the assessment is done based on the
questions asked and answers collected. An earlier version of this paper appeared in [9].

References

1. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT Press, Cam-
bridge (1995)

2. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press, Cambridge (2000)

3. Hintikka, J.: Knowledge and Belief. Cornell University Press (1962)
4. Halpern, J.Y., Zuck, L.D.: A little knowledge goes a long way: Knowledge-based derivations

and correctness proofs for a family of protocols. J. ACM 39(3), 449–478 (1992)
5. Su, K., Sattar, A., Wang, K., Luo, X., Governatori, G., Padmanabhan, V.: Observation-based

model for bdi-agents. In: AAAI, pp. 190–195 (2005)
6. Doignon, J.P.: Probabilistic assessment of knowledge. In: Dietrich, A. (ed.) Knowledge Struc-

tures. Springer, Heidelberg (1994)
7. Albert, D., Lukas, J. (eds.): Knowledge Spaces. Lawrence Erlbaum Associates, Mahwah

(1999)
8. Moreno, A.: Avoiding logical omniscience and perfect reasoning: A survey. AI com-

mun. 11(2), 101–122 (1998)
9. Padmanabhan, V., Governatori, G., Su, K.: Knowledge assessment: A modal lgic approach.

In: IJCAI Workshop on Knowledge Reasoning for Answering Questions (January 2007)

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 323–327, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Design of a Self-locating Automatic-Driving Robot

Gi-Duck Park, Robert McCartney, and Jung-Jin Yang

School of Computer Science and Information Engineering
The Catholic University of Korea

School of Computer Science and Engineering
The University of Connecticut

beda.park@gmail.com, robert@engr.uconn.edu,
jungjin@catholic.ac.kr

Abstract. In order for a robot to be part of ubiquitous computing to provide a
solution or service in different and distributed environment, it needs to precisely
recognize the environment it is placed into and the activity of the robot is con-
troled by the input data though this recognition. In this paper, we present a sys-
tem which allows the robot to effectively accomplish its mission by actuators
citing the Mental State built through integrating the context collected and data
output by various component agents of the robot. The system uses the black-
board system, serving as the central data structure in intellectual activity of a
robot. Also, the feasibility of this system is demonstrated through constructing
a cricket-based self-locating automatic-driving robot.

1 Introduction

In order for a robot to be part of ubiquitous computing [1] to provide a solution or
service in different and distributed environment, it needs to precisely recognize [2] the
environment it is placed into and the activity of the robot is controled by the input
data though this recognition. However, we have come in need of a structural method
and a robot design that would make use of the recognized context and collected data
through various perception device in a ubiquitous environment, which is bound to
distribute, that the robot is placed in. For this reason, many research are underway of
robot design [4] using the Multi Agent System [3] and robot design [6] using the
Blackboard System [5]. Through this paper we will illustrate a self-locating auto-
matic-driving robot, using the component structure of a robot that will efficiently save
and make use of the data collected and output by various agents of a robot.

2 Related Research

A part of distributed artificial intelligence, the Blackboard Architecture [5] provides a
solution through the cooperative work of distributed agents. The Blackboard is a
component of the Blackboard Architecture that is divided into several abstract levels
that are suitable for the problem. The agents [3] that communicate with others through
a specific level can make a transition to an adjacent level via interaction. By this
method, the collected data by the agent can be shared and the shared data in turn can
be used for the transition to the aimed level.

324 G.-D. Park, R. McCartney, and J.-J. Yang

The Cricket system [7], usually constructed on the ceiling, is composed of a bea-
con that transmits RF and supersonic sound signal and a receiver that receives the
signals sent by the beacon. The basic strategy to locate the placement is the conven-
tional distance measurement using supersonic, which means it is a proximity method
of deciding the present location using the already stored information of the beacon
location measured using the Time of Flight of the sound wave. The system used in
this paper is not such proximity method but a method that pinpoints the robot's loca-
tion through trigonometric survey using 3 signals received from multiple beacons
installed in the ceiling.

3 SOFTWARE Configuration

As illustrated in Figure 1, the IDIS Agent acts on the bases of the Sensor component,
which the senses the changed environment, and the Actuator component, which
changes the environment, in the Qplus Linux Kernel 2.6 operating system. The IDIS
Agent can be described as an intelligent entity to achieve the goal and is designed to
be able of logical parallel activity by embodying the overall frame of the Agent and
actuators through process. In order to deploy the IDIS Agent in the system, the system
needs an ability to add actuators which can use the agent's intelligent data structure,
be reactive, and execute its intelligent conception.

Fig. 1. The Structure of IDIS Agent System Components

 The Design of a Self-locating Automatic-Driving Robot 325

IDIS Agent uses the Mental State structure indicated at the top of Figure 1, and the
Mental State stores the information and knowledge of the environment recognition
from the Agent's perspective. The Mental State structure is allocated at the common
memory where it is accessed as reference in the processor, composing the IDIS
Agent. The Mental State is defined by the combination of structures of processor
information, location information, status information, environment information, and
preprocessed knowledge which all compose the IDIS Agent.

As indicated in the middle of Figure 1, the actuators composing the IDIS Agent
can be divided into two large categories. The first is the actuators, which correspond
to the Reactive Layer that is operated regularly. These consist of actuator, which pro-
tects the agent itself and prevents it from having a negative influence on the environ-
ment by observing the environment information and status information, and another
actuator, acting as the debugger the information of the Mental State. The second fall
to the category of Deliberative Layer. There are three types of actuators here; ones
initializing the Mental State of IDIS Agent to the belief of the agent, others fulfilling
the object of the agent and thus achieving the over all goal, and still others performing
the agent's movement considering the present location and status.

The Sensing Controller and Moving Controller actuators, indicated at the bottom of
Figure 1, use the Cricket System protocol to interact with the Sensor component, and
the Actuator protocol to interact with the Actuator component respectively. The ac-
tuator of the Sensing Controller has a regular cycle (i.e. a cycle allowed by the Cricket
System) and it performs the self-protection of the agent by producing location infor-
mation, used by the agent, from distinguishing the location of the IDIS Agent, using
modified data through a modifying algorithm, and detecting the existence of a land
mine. The Moving Controller is in charge of proper movement based on the routes
that the agent should take, recorded in the Mental State.

4 Agent-Based Approach

An agent can add an actuator, which would communicate with a distributed data sys-
tem, such as a multi-agent system platform like Jade or a distributed system like
CORBA in order to extend and revise knowledge according to circumstances and
cooperate with other agents.

The Belief Creator actuator updates the Mental State of modified data and preproc-
essed pathways (obstacles are applied because they are already known) by input and
output of file. For example of such application, the system that we have suggested
replaced the input and out put of file by TCP/IP based communicating actuator. The
Debugger actuator monitors the Mental State regularly. Monitoring and extract of
data based on GUI is possible if a simple application of TCP/IP is introduced. If ab-
stract design techniques of object-oriented, rule-based, and script-based are applied,
the actuators have high reusability and productivity in composing another agent. This
is under the assumption that the Mental State is shared.

5 The Flow of Component

The course through which the IDIS Agent performs can be summarized by the activ-
ity diagram of Figure 2. Once the IDIS Agent is active, it uses the Belief Creator

326 G.-D. Park, R. McCartney, and J.-J. Yang

actuator to initialize the Mental State. Afterwards, the Reactive Layer actuators are
activated to modify the environment and status information in the Mental State. The
process of the Sensing Controller can end up in endless wait if the Cricket-data-
producing module stops while the Cricket data is being sensed. Life Checker senses
the actuator in endless wait, and reboots the processor if the actuator is indeed stuck.
The Sensing Controller stops the movement if the IDIS agent senses a land mine
while moving, and records whether the land mine exists in the Mental State.

The IDIS Agent activates the Goal Controller actuator and the Moving Controller ac-
tuator by turn. The Goal Controller records the information and knowledge to achieve

Fig. 2. IDIS Agent Activity Diagram

Fig. 3. Resource Measurement

 The Design of a Self-locating Automatic-Driving Robot 327

each sub-goals, which have been divided to reach the overall goal, on the Mental State.
It decides the pathway to achieve the sub-goal and to take additional action or set the
next sub-goal depending on whether the previous one has been accomplished. Also, if a
land mine has been detected, the Moving Controller sets an alternative path after a
search. The Moving Controller cites the pathway and action set by the Goal Controller
to reach the goal and executes necessary moves needed for the goal achievement.

6 Conclusion

The IDIS Agent leads and activates small units of actuators at the needed moment.
Therefore, the resource consumption is low because all the functions of the system are
not stationed as images in the memory. Also, the actuator can be improved by arrang-
ing improved process images at the activation point. Figure 3 is a target system moni-
tor provided by Visual Esto, measuring the consumed resources until the IDIS agent
retrieves and saves the target.

CPU shows low usage under 10% and the required memory maintained a consistent
volume. Thus, the rest of the resources can be used for various purposes such as addi-
tional actuator and supplements. Considered methods of changing the Mental State at
the point of action are to use a light DBMS to separate the data and applied code, and
to produce a different form of Mental State and introduce a synchronizing process.

Acknowledgement

This research is supported by Foundation of ubiquitous computing and networking
project (UCN) Project, the Ministry of Knowledge Economy(MKE) 21st Century
Frontier R&D Program in Korea and a result of subproject UCN 08B3-S2-10M.

References

1. Abowd, G.D., Mynatt, E.D.: Charting Past, Present, and Future Research in Ubiquitous
Computing. ACM Transactions on Computer-Human Interaction 7(1) (March 2000)

2. Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing envi-
ronments. Special Issue on Ontologies for Distributed Sysems, Knowledge Engineering Re-
view 18(3), 197–207 (2004)

3. Sycara, K.P.: Multiagent Systems. Intelligent Agents AL magazine 19(2) (Summer 1998)
4. Inoocenti, B., Lopez, B., Salvi, J.: Multi-Agent System Architecture with Planning for a

Mobile Robot. In: X Conference of the Spanish Association for Artificial Intelligence, CA-
EPIA (November 2003)

5. Corkill, D.D.: Blackboard Systems. AI Expert 6(9), 40–47 (1991)
6. Lau, T.L., Lau, H.Y.K., Ko, A.: A Distributed Blackboard-based Control System for Modu-

lar Self-Reconfigurable Robots. The University of Hong Kong. Department of Industrial
and Manufacturing Systems Engineering (2003)

7. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The Cricket Location-Support System.
MIT Laboratory for Computer Science 2000 (2000)

Settling on the Group’s Goals: An n-Person
Argumentation Game Approach

Duy Hoang Pham1,2, Subhasis Thakur1, and Guido Governatori2

1 The University of Queensland,
School of Information Technology and Electrical Engineering,

Brisbane, Australia
{pham,subhasis}@itee.uq.edu.au

2 National ICT Australia, Queensland Research Laboratory
guido.governatori@nicta.com.au

Abstract. Argumentation games have been proved to be a robust and flexible
tool to resolve conflicts among agents. An agent can propose its explanation and
its goal known as a claim, which can be refuted by other agents. The situation is
more complicated when there are more than two agents playing the game.

We propose a weighting mechanism for competing premises to tackle with
conflicts from multiple agents in an n-person game. An agent can defend its pro-
posal by giving a counter-argument to change the “opinion” of the majority of
opposing agents. During the game, an agent can exploit the knowledge that other
agents expose in order to promote and defend its main claim.

1 Introduction

In multi-agent systems, there are several situations requiring a group of agents to settle
on common goals despite each agent’s pursuit of individual goals which may conflict
with other agents. To resolve the conflicts, an agent can argue to convince others about
its pursued goal and provides evidence to defend its claim. This interaction can be
modelled as an argumentation game [1, 2, 3]. In an argumentation game, an agent can
propose an explanation for its goal (i.e., an argument), which can be rejected by counter-
evidence from other agents. This action can be iterated until an agent either successfully
argues its proposal against other agents or drops its initial claim.

The argumentation game approach offers a robust and flexible tool to resolve con-
flicts by evaluating the status of arguments from agents. Dung’s argumentation se-
mantics [4] is widely recognised to establish relationships (undercut, defeated, and
accepted) among arguments. The key notion for a set of arguments is whether a set
of arguments is self-consistent and provides the basis to derive a conclusion.

An argumentation game is more complicated when the group has more than two
agents. It is not clear how to extend existing approaches to resolve conflicts from multi-
ple agents, especially when agents have equal weight. In this case, the problem amounts
to deciding which argument has precedence over competing arguments. The main idea
behind our approach is the global collective preference over individual proposals, which
enables an agent to identify the key arguments and premises from opposing agents in
order to generate counter-arguments. These arguments cause a majority of opposing

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 328–339, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Settling on the Group’s Goals: An n-Person Argumentation Game Approach 329

agents to reconsider their claims, therefore, an agent has an opportunity to change “at-
titudes” of others.

Each of our agents is equipped with its private knowledge, background knowledge,
and knowledge obtained from other agents. The background knowledge, commonly
shared by the group, presents the expected behaviours of a member of the group.
Any argument violating the background knowledge is not supported by the group. The
knowledge about other agents, growing during the game, enables an agent to efficiently
convince others about its own goal. Defeasible logic is chosen as our underlying logic
for the argumentation game due to its efficiency and simplicity in representing incom-
plete and conflicting information. Furthermore, the logic has a powerful and flexible
reasoning mechanism [5, 6] which enables our agents to flawlessly capture Dung’s ar-
gumentation semantics by using two features of defeasible reasoning, namely the am-
biguity propagating and ambiguity blocking.

Our paper is structured as follows. In section 2, we briefly introduce notions of de-
feasible logic and the construction of the argumentation semantics. Section 3 introduces
our n-person argumentation game framework using defeasible logic. We present firstly
the external model of agents’ interaction, which describes a basic procedure for an in-
teraction between agents. Secondly, we define the internal model, which shows how
an agent can deal with individual knowledge sources to propose and defend its goal
against other agents. Finally, we show the justification of arguments generated by an
agent during the game w.r.t. the background knowledge of the group. Section 4 pro-
vides an overview of research works related to our approach. Section 5 concludes the
paper.

2 Background

In this section, we briefly present essential notions of defeasible logic (DL) and the
construction of Dung’s argumentation semantics by using two features of defeasible
reasoning including ambiguity blocking and propagating.

2.1 Defeasible Logic

Following the presentation in [7], a defeasible theory D is a triple (F,R,>) where F is a
finite set of facts, R is a finite set of rules, and > is a superiority relation on R. The lan-
guage of defeasible logic consists of a finite set of literals, l, and their complement∼ l.

A rule r in R is composed of an antecedent (body) A(r) and a consequent (head) C(r),
where A(r) consists of a finite set of literals and C(r) contains a single literal. A(r) can
be omitted from the rule if it is empty. There are three types of rules in R, namely Rs

(strict rules), Rd (defeasible rules), and Rdft (defeaters).
A conclusion derived from the theory D is a tagged literal and is categorised accord-

ing to how the conclusion can be proved:

– +∆q: q is definitely provable in D.
– −∆q: q is definitely unprovable in D.
– +∂q: q is defeasibly provable in D.
– −∂q: q is defeasibly unprovable in D.

330 D.H. Pham, S. Thakur, and G. Governatori

The provability is based on the concept of a derivation (or proof) in D = (F,R,>).
Informally, definite conclusions can be derived from strict rules by forward chaining,
while defeasible conclusions can be obtained from defeasible rules iff all possible “at-
tacks” are rebutted due to the superiority relation or defeater rules. A derivation is a fi-
nite sequence P = (P(1), . . . ,P(n)) of tagged literals satisfying proof conditions (which
correspond to inference rules for each of the four kinds of conclusions). P(1..i) de-
notes the initial part of the sequence P of length i. In the follows, we present the proof
conditions for definitely and defeasibly provable conclusions1:

+∆ : If P(i+ 1) = +∆q then
(1) q ∈ F or
(2) ∃r ∈ Rs[q] ∀a ∈ A(r) : +∆a ∈ P(1..i)

+∂ : If P(i+ 1) = +∂q then either
(1) +∆q ∈ P(1..i) or

(2.1) ∃r ∈ Rsd[q] ∀a ∈ A(r) : +∂a ∈ P(1..i) and
(2.2)−∆∼q ∈ P(1..i) and
(2.3) ∀s ∈ Rsd[∼q] either

(2.3.1) ∃a ∈ A(s) :−∂a ∈ P(1..i) or
(2.3.2) ∃t ∈ Rsd[q] such that t > s and

∀a ∈ A(t) : +∂a ∈ P(1..i)

The set of conclusions of a defeasible theory is finite2, and it can be computed in
linear time [10].

DL can be extended by an ambiguity propagating variant [11, 5]. The superiority
relation is not considered in the inference process. Inference with the ambiguity propa-
gation introduces a new tag Σ , a positive support for a literal +Σq is defined as:

+Σ : If P(i+ 1) = +Σq then ∃r ∈ Rsd[q]: ∀a ∈ A(r) : +Σa ∈ P(1..i)

+Σ p means p is supported by the defeasible theory and there is a monotonic chain
of reasoning that would lead us to conclude p in the absence of conflicts. A literal that
is defeasibly provable (+∂) is supported, but a literal may be supported even though it
is not defeasibly provable. Thus support is a weaker notion than defeasible provability.

2.2 Argumentation Semantics

In what follows, we briefly introduce the basic notions of an argumentation system
using defeasible reasoning. We also present the acceptance of an argument w.r.t. Dung’s
semantics.

Definition 1. An argument A for a literal p based on a set of rules R is a (possibly
infinite) tree with nodes labelled by literals such that the root is labelled by p and for
every node with label h:

1 For a full presentation and proof conditions of DL and its properties refer to [8, 9].
2 It is the Herbrand base that can be built from the literals occurring in the rules and the facts of

the theory.

Settling on the Group’s Goals: An n-Person Argumentation Game Approach 331

1. If b1, . . . ,bn label the children of h then there is a rule in R with body b1, . . . ,bn and
head h.

2. If this rule is a defeater then h is the root of the argument.
3. The arcs in a proof tree are labelled by the rules used to obtain them.

DL requires a more general notion of proof tree that admits infinite trees, so that the
distinction is kept between an infinite un-refuted chain of reasoning and a refuted chain.
Depending on the rules used, there are different types of arguments.

– A supportive argument is a finite argument in which no defeater is used.
– A strict argument is an argument in which only strict rules are used.
– An argument that is not strict, is called defeasible.

Relationships between two arguments A and B are determined by literals constituting
these arguments. An argument A attacks a defeasible argument B if a literal of A is the
complement of a literal of B, and that literal of B is not part of a strict sub-argument of
B. A set of arguments S attacks a defeasible argument B if there is an argument A in
S that attacks B.

A defeasible argument A is undercut by a set of arguments S if S supports an
argument B attacking a proper non-strict sub-argument of A. An argument A is undercut
by S means some literals of A cannot be proven if we accept the arguments in S .

The concepts of the attack and the undercut concern only defeasible arguments and
sub-arguments. A defeasible argument is assessed as valid if we can show that the
premises of all arguments attacking it cannot be proved from the valid arguments in S .
The concepts of provability depend on the method used by the reasoning mechanism
to tackle ambiguous information. According to the features of the defeasible reasoning,
we have the definition of acceptable arguments (definition 2).

Definition 2. An argument A for p is acceptable w.r.t. a set of arguments S if A is
finite, and

1. If reasoning with the ambiguity propagation is used: (a) A is strict, or (b) every
argument attacking A is attacked by S .

2. If reasoning with the ambiguity blocking is used: (a) A is strict, or (b) every argu-
ment attacking A is undercut by S .

The status of an argument is determined by the concept of acceptance. If an argument
can resist a reasonable refutation, this argument is justified. If an argument cannot over-
come attacks from other arguments, this argument is rejected. We define the sets of
justified arguments as follows:

Definition 3. Let D be a defeasible theory. We define JD
i as follows.

– JD
0 = /0

– JD
i+1 = {a ∈ ArgsD| a is acceptable w.r.t. JD

i }

The set of justified arguments in a defeasible theory D is JArgsD =
⋃∞

i=1 JD
i .

332 D.H. Pham, S. Thakur, and G. Governatori

3 n-Person Argumentation Game

In this section, we utilise the argumentation semantics presented in section 2.2 to model
agents’ interactions in an n-person argumentation game. Also, we propose a knowledge
structure which enables an agent to construct its arguments w.r.t. knowledge from other
agents as well as to select a defensive argument.

3.1 Agents’ Interactions

In an argumentation game, a group of agents A shares a set of goals G and a set
of external constraints Tbg represented as a defeasible theory, known as a background
knowledge. This knowledge provides common expectations and restrictions in A . An
agent has its own view on the working environment, therefore, can autonomously pur-
sue its own goal. In this work, we model interactions between agents to settle on goals
commonly accepted by the group. Also, at each step of the game, we show how an agent
can identify a goal and sub-goals for its counter arguments. This information is critical
for those agents whose main claims are refuted either directly by arguments from other
agents or indirectly by the combination of these arguments.

Settling on Common Goals. An agent can pursue a goal in the set of common goals G
by proposing an explanation for its goal. The group justifies proposals from individual
agents in order to identify commonly-accepted goals using a dialogue as follows:

1. Each agent broadcasts an argument for its goal. The system can be viewed as an
argumentation game with n-players corresponding to the number of agents.

2. An agent checks the status of its argument against those from the other agents.
There are three possibilities: (a) directly refuted if its argument conflicts with those
from others; (b) collectively refuted if its argument does not conflict with individual
arguments but violates the combination of individual arguments (See section 3.2);
(c) collectively accepted if its argument is justified by the combination (See section
3.3).

3. According to the status of its main claim, an agent can: (a) defend its claim; (b)
attack a claim from other agents; (c) rest. An agent repeats the previous step until
the termination conditions of the game are reached.

4. The dialogue among agents is terminated if all agents can pass their claims. For a
dispute, agents stop arguing if they do not have any more argument to propose.

Weighting Opposite Premises. In a dialogue, at each iteration, an agent is required
to identify goals and sub-goals which are largely shared by other agents. This infor-
mation is highly critical for agents, whose main claims are refuted either directly by
other agents or collectively by the combination of arguments from others in order to
effectively convince other agents.

To achieve that an agent, Ame, identifies a sub-group of agents, namely “opp-group”,
which directly or collectively attacks its main claim. Ame creates Argsopp as the set of
opposing arguments from the opp-group and Popp as the set of premises in Argsopp.
Essentially, Argsopp contains arguments attacking Ame’s claim. Each element of Popp

is weighted by its frequency in Argsopp. We define the preference over Popp as given

Settling on the Group’s Goals: An n-Person Argumentation Game Approach 333

p1, p2 ∈ Popp, p2 � p1 if the frequency of p2 in Argsopp is greater than that of p1.
Basically, the more frequent an element q ∈ Popp is the more agents use this premise
in their arguments. Therefore the refutation of q challenges other agents better than the
premises having lower frequency since this refutation causes a larger number of agents
to reconsider their claims.

Defending the Main Claim. At iteration i, Argsopp
i represents the set of arguments

played by the opp-group:

Argsopp
i =

|A |⋃
j=0

Args
A j
i |Args

A j
i directly attacks ArgsAme

i

where ArgsA j is the argument played by agent A j. If A j rests at iteration i, its last argu-

ment (at iteration k) is used Args
A j
i = Args

A j
k . The set of opposite premises at iteration

i is:
Popp

i = {p|p ∈ Argsopp
i and p ∈ ArgsAme

i }
The preference over elements of Popp provides a mechanism for Ame to select argu-

ments for defending its main claim.

Example 1. Suppose that agent A1 and A2 respectively propose ArgsA1 = {⇒ e⇒ b⇒
a} and ArgsA2 = {⇒ e ⇒ c ⇒ a} whilst agent A3 claims ArgsA3 = {⇒ d ⇒ ∼a}.
From A3’s view, its claim directly conflicts with those of A1 and A2. The arguments
and premises of the opp-group are:

Argsopp
i = {⇒ e⇒ b⇒ a;⇒ e⇒ c⇒ a} and Popp

i = {a2,b1,c1,e2}
The superscript of elements in Popp

i represents the frequency of a premise in Argsopp
i .

A3 can defend its claim by providing a counter-argument that refute ∼a – the major
claim of the opp-group. Alternatively, A3 can attack either b or c or e in the next step.
An argument against e is the better selection compared with those against b or c since
A3’s refutation of e causes both A1 and A2 to reconsider their claims.

Attacking an Argument. In this situation, individual arguments of other agents do not
conflict with that of Ame but the integration of these arguments does. Agent Ame should
argue against one of these arguments in order to convince others about its claim.

At iteration i, let the integration of arguments be T i
INT = Tbg

⋃|A |
j=0 T i

j , where T i
j is

the knowledge from agent j supporting agent j’s claim, and JArgsTi
INT be the set of

justified arguments from integrated knowledge of other agents (See section 3.3). The
set of opposite arguments is defined as:

Argsopp
i = a|a ∈ JArgsTi

INT and a is attacked by ArgsAme
i

and the set of opposite premises is:

Popp
i = {p|p ∈ Argsopp

i and (p ∈ ArgsAme
i or p is not attacked by ArgsAme

i)}
The second condition is to guarantee that Ame is self-consistent and does not play any

argument against itself. In order to convince other agents about its claim, Ame is required
to provide arguments against any premise in Popp. In fact, the order of elements in Popp

offers a guideline for Ame on selecting its attacking arguments.

334 D.H. Pham, S. Thakur, and G. Governatori

3.2 Agent’s Knowledge Structure

In this section, we present a knowledge structure which allows an agent to incorporate
background knowledge and knowledge exposed by individual agents during the game.
Also, we propose two simple methods to integrate knowledge sources w.r.t. ambiguity
information.

Knowledge Representation. Agent Ame has three types of knowledge including the
background knowledge Tbg, its own knowledge about working environment Tme, and
the knowledge about others:

Tother = {Tj : 1≤ j ≤ |A | and j = me}

where Tj is obtained from agent A j during iterations and Tj is represented in DL. At
iteration i, the knowledge obtained from A j is accumulated from previous steps:

T i
j =

i−1⋃
k=0

T k
j + Args

A j
i

In our framework, the knowledge of an agent can be rebutted by other agents. It is
reasonable to assume that defeasible theories contain only defeasible rules and defeasi-
ble facts (defeasible rules with empty body).

Knowledge Integration. To generate arguments, an agent integrates knowledge from
different sources. Given ambiguous information between two sources, there are two
possible methods to combine them: ambiguity blocking is selected if the preference
between these sources is known; otherwise, ambiguity propagation is applied.

Ambiguity Blocking Integration. This method extends the standard defeasible reasoning
by creating a new superiority relation from that of the knowledge sources i.e. given two
sources as Tsp – the superior theory, and Tin – the inferior theory, we generate a new
superiority relation Rsp

d > Rin
d based on rules from two sources. The integration of the

two sources is denoted as TINT = Tsp � Tin. Now, the standard defeasible reasoning can

be applied for TINT to produce a set of arguments ArgsTINT
AB .

Example 2. Given two defeasible theories

Tbg = {Rd = {r1 : e⇒ c;r2 : g, f ⇒∼c,r3 :⇒ e};>= {r2 > r1}}
Tme = {Rd = {r1 :⇒ d;r2 : d⇒∼a;r3 :⇒ g}}

The integration of Tbg � Tme produces:

TINT ={Rd ={rTbg
1 : e⇒c;r

Tbg
2 : g, f⇒∼c,r

Tbg
3 :⇒ e;rTme

1 :⇒ d;rTme
2 : d⇒a;rTme

3 :⇒ g};

>={rTbg
2 > r

Tbg
1 }}

The integrated theory inherits the superiority relation from Tbg. That means the new
theory reuses the blocking mechanism from Tbg.

Settling on the Group’s Goals: An n-Person Argumentation Game Approach 335

Ambiguity Propagation Integration. Given two knowledge sources T1 and T2, the rea-
soning mechanism with ambiguity propagation can directly apply to the combination
of theories denoted as T

′
INT = T1 +T2. The preference between two sources is unknown,

therefore, there is no method to solve conflicts between them. The supportive and op-
posing arguments for any premise are removed from the final set of arguments. The set

of arguments obtained by this integration is denoted by Args
T
′
INT

AP .

3.3 Argument Justification

The motivation of an agent to participate in the game is to promote its own goal. How-
ever, its claim can be refuted by different agents. To gain the acceptance of the group,
at the first iteration, an agent should justify its arguments by common constraints and
expectations of the group governed by the background knowledge Tbg. The set of argu-
ments justified by Tbg determines arguments that an agent can play to defend its claim.
In subsequent iterations, even if the proposal does not conflict with other agents, an
agent should ponder knowledge from others to determine the validity of its claim. That
is an agent is required a justification by collecting individual arguments from others.

Justification by Background Knowledge. Agent Ame generates the set of arguments
for its goals by combining its private knowledge Tme and the background knowledge Tbg.
The combination is denoted as TINT = Tbg � Tme and the set of arguments is ArgsTINT .
Due to the non-monotonic nature of DL, the combination can produce arguments be-
yond individual knowledges. From Ame’s view, this can bring more opportunities to ful-
fil its goals. However, Ame’s arguments must be justified by the background knowledge
Tbg since Tbg governs essential behaviours (expectations) of the group. Any attack to Tbg

is not supported by members of A . Ame maintains the consistency with the background
knowledge Tbg by following procedure:

1. Create TINT = Tbg � Tme. The new defeasible theory is obtained by replicating all
rules from common constraints Tbg into the internal knowledge Tme while maintain-
ing the superiority of rules in Tbg over that in Tme.

2. Use the ambiguity blocking feature to construct the set of arguments ArgsTbg from
Tbg and the set of arguments ArgsTINT

AB from TINT.
3. Remove any argument in ArgsTINT

AB attacked by those in ArgsTbg , obtaining the jus-

tified arguments by the background knowledge JArgsTINT = {a ∈ ArgsTINT
AB and a is

accepted by ArgsTbg}.

Example 3. Consider two defeasible theories:

Tbg ={Rd = {r1 : e⇒ c;r2 : g, f ⇒∼c,r3 :⇒ e};>= {r2 > r1}}
Tme ={Rd = {r1 :⇒ d;r2 : d⇒∼a;r3 :⇒ g}}

We have sets of arguments from the background theory and the integrated theory:

ArgsTbg ={⇒ e;⇒ e⇒ c}
ArgsTINT = ArgsTbg�Tme ={⇒ e;⇒ e⇒ c;⇒ d;⇒ g;⇒ d⇒∼a}

336 D.H. Pham, S. Thakur, and G. Governatori

In this example, there is not any attack between arguments in ArgsTbg and ArgsTINT
AB .

In other words, arguments from ArgsTINT are acceptable by those from ArgsTbg . The set
of justified arguments w.r.t. ArgsTbg is JArgsTINT = ArgsTINT

AB .

Collective Justification. During the game, Ame can exploit the knowledge exposed by
other agents in order to defend its main claims. Due to possible conflicts in individual
proposals, an agent uses the sceptical semantics of the ambiguity propagation reasoning
to retrieve the consistent knowledge. Essentially, given competing arguments an agent
does not have any preference over them, therefore, these arguments will be rejected. The
consistent knowledge from the others allows an agent to discover “collective wisdom”
distributed among agents in order to justify its claim.

The justification of collective arguments, which are generated by integrating all
knowledge sources, is done by the arguments from the background knowledge ArgsTbg .
The procedure runs as follows:

1. Create a new defeasible theory T ′INT = Tbg � Tme +Tother.

2. Generate the set of arguments Args
T
′

INT
AP from T ′INT using the feature of ambiguity

propagation.

3. Justify the new set of arguments JArgsT
′
INT = {a|a ∈ Args

T
′
INT

AP and a is accepted by
ArgsTbg}.

JArgsT
′
INT allows Ame to verify the status of its arguments for its claim JArgsTINT .

If arguments in JArgsT
′
INT and JArgsTINT do not attack one another, Ame’s claims are

accepted by other agents. Any conflict between two sets shows that accepting argu-

ments in JArgsT
′
INT stops Ame to achieve its claims in next steps. The set of arguments

Argsopp against Ame is identified as any argument in JArgsT
′
INT attacking Ame’s argu-

ments. Ame also establishes Popp to select its counter-argument. It is noticed that Ame is
self-consistent.

Example 4. Suppose the background knowledge Tbg and the private knowledge Tme of
Ame are:

Tbg = {Rd ={r1 : e⇒ c;r2 : g, f ⇒∼c};>= {r2 > r1}}
Tme = {Rd ={r1 :⇒ e;r2 : c⇒ d;r3 :⇒ g}}

Agent Ame currently plays {⇒ e⇒ c⇒ d} and knows about other agents:

Tother = {T1,T2} where T1 = {⇒ h⇒ f ⇒ b⇒ a} and T2 = {⇒ e⇒ c⇒ a}

The claim of A3 is acceptable w.r.t. arguments played by the other agents. However,
the combination T

′
INT = Tbg � Tme +Tother shows the difference. This combination gen-

erates {⇒ g,⇒ e,⇒ e⇒ f ⇒ b,⇒ g, f ⇒∼c}. {⇒ g, f ⇒∼c} is due to the superiority
relation in Tbg which rebuts the claim of A3. Therefore, the set of opposing arguments
Argsopp = {⇒ g, f ⇒∼c} and Popp = { f 1}. Given this information, A3 should provide
a counter-evidence to f in order to pursue c. Moreover, A3 should not expose g to the
other agents. Otherwise, A3 has to drop its initial claim d.

Settling on the Group’s Goals: An n-Person Argumentation Game Approach 337

4 Related Works

Substantial works have been done on argumentation games in the artificial intelligence
and law-field. [1] introduces a dialectical model of legal argument, in the sense that
arguments can be attacked with appropriate counterarguments. In the model, the factual
premises are not arguable; they are treated as strict rules. [12] presents an early specifi-
cation and implementation of an argumentation game based on the Toulmin argument-
schema without a specified underlying logic. [13] presented the pleadings game as a
normative formalization and fully implemented computational model, using conditional
entailment.

Settling on a common goal among agents can be seen as a negotiation process where
agents exchange information to resolve conflicts or to obtain missing information. The
work in [14] provides a unified and general formal framework for the argumentation-
based negotiation dialogue between two agents. The work establishes a formal con-
nection between the status of a argument (accepted, rejected, and undecided) with an
agent’s actions (accept, reject, and negotiate respectively). Moreover, an agent’s knowl-
edge is evolved by accumulating arguments during interactions.

[3] presents an argumentation-based coordination, where agents can exchange argu-
ments for their goals and plans to achieve the goals. The acceptance of an argument of
an agent depends on the attitudes of this agent namely credulous, cautious, and scep-
tical. In [15], agents collaborate with one another by exchanging their proposals and
counter-proposals in order to reach a mutual agreement. During conversations, an agent
can retrieve missing literals (regarded as sub-goals) or fulfil its goals by requesting col-
laboration from other agents.

We have advantages of using DL since it flawlessly captures the statuses of argu-
ments, such as accepted, rejected, and undecided by the proof conditions of DL. The
statuses are derived from the notions of +∂ ,−∂ and +Σ corresponding to a positive
proof, a negative proof, and a positive support of a premise. Consequently, an agent
can take a suitable action either to provide more evidence or to accept an argument
from others. In addition, DL provides a compact representation to accommodate new
information.

Using DL to capture concepts of the argumentation game is supported by [16, 17]
and recently [18]. [16] focuses on persuasive dialogues for cooperative interactions
among agents. It includes in the process cognitive states of agents such as knowledge
and beliefs, and presents some protocols for some types of dialogues (e.g. information
seeking, explanation, persuasion). [17] provides an extension of DL to include the step
of the adversarial dialogue by defining a meta-program for an alternative computational
algorithm for ambiguity propagating DL while the logic presented here is ambiguity
blocking. In [18], arguments are generated by using the defeasible reasoning with am-
biguity blocking. After each step in an argumentation game, an agent can upgrade the
strength of its arguments if these arguments are not refuted by the opposing agent.

We tackle the problem of evolving knowledge of an agent during iterations, where
the argument construction is an extension of [18]. In our work, we define the no-
tion of collective acceptance for an argument and a method to weight arguments de-
fending against opposing arguments by using both features of ambiguity blocking and
propagating.

338 D.H. Pham, S. Thakur, and G. Governatori

The works in literature did not clearly show how an agent can tackle with conflicts
from multiple agents, especially when the preference over arguments is unknown. The
main difference in our framework is the external model where more than two agents can
argue to settle on goals commonly accepted by the group. Our weighting mechanism
enables an agent to build up a preference over premises constituting opposing arguments
from other agents. As a result, an agent can effectively select an argument among those
justified by the group’s background knowledge to challenge other agents.

We also propose the notion of collective justification to tackle the side-effect of ac-
cepting claims from individual agents. Individual arguments for these claims may not
conflict with one another, but the integration of these arguments can result in conflict-
ing with an agent’s claim. This notion is efficiently deployed in our work due to the
efficiency of defeasible logic in handling ambiguous information.

5 Conclusions

We presented an n-person argumentation game based on defeasible logic, which enables
a group of more than two agents to settle on goals commonly accepted by the group.
During an argumentation game, each agent can use knowledge from multiple sources in-
cluding the group’s constraints and expectations, other agents’ knowledge, and its own
knowledge in order to argue to convince other agents about its goals. The knowledge
about the group’s constraints and expectations plays a critical role in our framework
since this knowledge provides a basis to justify new arguments non-monotonically in-
ferred from the integration of different sources.

In this work, we propose a simple weighting mechanism, which is based on the
frequency of premises in arguments attacking an agent’s claim, in order to tackle the
problem of conflicts from multiple agents. In the future work, we will extend this mech-
anism to incorporate the notion of trustful arguments from trusted agents to better select
a rebuttal argument and resolve conflicts among agents.

References

[1] Prakken, H., Sartor, G.: A dialectical model of assessing conflicting arguments in legal
reasoning. Artificial Intellifgence and Law 4, 331–368 (1996)

[2] Jennings, N.R., Parsons, S., Noriega, P., Sierra, C.: On argumentation-based negotiation.
In: Proceedings of the International Workshop on Multi-Agent Systems, pp. 1–7 (1998)

[3] Parsons, S., McBurney, P.: Argumentation-based dialogues for agent coordination. Group
Decision and Negotiation (12), 415–439 (2003)

[4] Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358
(1995)

[5] Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: A flexible framework for defea-
sible logics. In: Proc. American National Conference on Artificial Intelligence, pp. 401–405
(2000)

[6] Maher, M.J., Rock, A., Antoniou, G., Billignton, D., Miller, T.: Efficient defeasible reason-
ing systems. International Journal of Artificial Intelligence Tools 10(4), 483–501 (2001)

Settling on the Group’s Goals: An n-Person Argumentation Game Approach 339

[7] Billington, D.: Defeasible logic is stable. Journal of Logic and Computation 3, 370–400
(1993)

[8] Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for de-
feasible logic. ACM Transactions on Computational Logic 2(2), 255–287 (2001)

[9] Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding defeasible logic
into logic programming. Theory and Practice of Logic Programming 6(6), 703–735 (2006)

[10] Maher, M.J.: Propositional defeasible logic has linear complexity. Theory and Practice of
Logic Programming 1(6), 691–711 (2001)

[11] Governatori, G., Maher, M.J., Antoniou, G., Billington, D.: Argumentation Semantics for
Defeasible Logic. J. Logic Computation 14(5), 675–702 (2004)

[12] Bench-Capon, T.J.: Specification and implementation of Toulmin dialogue game. In: Hage,
J.C., Bench-Capon, T.J.M., Koers, A.W., de Vey Mestdagh, C.N.J., Grutters, C.A.F.M.
(eds.) Jurix 1998, pp. 5–20 (1998)

[13] Lodder, A.R.: Thomas F. Gordon, The Pleadings Game – an artificial intelligence model of
procedural justice. Artif. Intell. Law 8(2/3), 255–264 (2000)

[14] Amgoud, L., Dimopoulos, Y., Moraitis, P.: A unified and general framework for
argumentation-based negotiation. In: Proceedings of the 6th international joint conference
on AAMAS, pp. 1–8 (2007)

[15] Rueda, S.V., Garcia, A.J., Simari, G.R.: Argument-based negotiation among bdi agents.
Journal of Computer Science and Technology 2(7), 1–8 (2002)

[16] Letia, I.A., Vartic, R.: Defeasible protocols in persuasion dialogues. In: WI-IATW 2006:
Proceedings of the 2006 IEEE/WIC/ACM international conference on Web Intelligence
and Intelligent Agent Technology, pp. 359–362 (2006)

[17] Hamfelt, A., Eriksson, J., Nilsson, J.F.: A metalogic formalization of legal argumentation as
game trees with defeasible reasoning. In: ICAIL 2005: Proceedings of the 10th international
conference on Artificial intelligence and law, pp. 250–251. ACM, New York (2005)

[18] Thakur, S., Governatori, G., Padmanabhan, V., Eriksson Lundström, J.: Dialogue games in
defeasible logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830,
pp. 497–506. Springer, Heidelberg (2007)

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 340–347, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Revenue Maximising Adaptive Auctioneer Agent

Janine Claire Pike and Elizabeth Marie Ehlers

Academy for Information Technology, APK Campus,
University of Johannesburg, Johannesburg, South Africa

janine.pike@gmail.com

Abstract. Auction theory has proven that auction revenue is influenced by fac-
tors such as the auction format and the auction parameters. The Revenue
Maximising Adaptive Auctioneer (RMAA) agent model has been developed
with the aim of generating maximum auction revenue by adapting the auction
format and parameters to suit the auction environment. The RMAA agent uses a
learning classifier system to learn which rules are profitable in a particular bid-
ding environment. The profitable rules are then exploited by the RMAA agent
to generate maximum revenue. The RMAA agent model can effectively adapt
to a real time dynamic auction environment.

Keywords: Agent auctions, auction theory, reinforcement learning, learning
classifier system, ZCS.

1 Introduction

An auction is a rule-based mechanism that is used to allocate resource(s) amongst a
set of competing bidders. Auctioneer or seller agents will want to maximize their
revenue in an auction. Auction parameters such as the auction format, the reserve
price, the closing of the auction etc. will directly influence the number of bidders as
well as the nature of bidders that will participate in the auction [1] and thus the reve-
nue of the seller. The importance of auction design can be illustrated by the New
Zealand radio spectrum auction in 1990. The projected revenue for the auction was
NZ$250 million but the auction only managed to generate a mere NZ$36 million. The
auction format selected was a Vickrey auction where a Dutch auction would have
generated considerably more revenue [2]. The aim of this research is to develop an
auctioneer agent that maximises auction revenue by selecting the most suitable auc-
tion mechanism and auction parameters based on the environment and bidder
characteristics.

There are four standard single-unit auction types: the English auction, the Dutch
auction, the first price sealed bid auction and the Vickrey auction. The Dutch and first
price sealed bid auction are known as first price auctions. The English and Vickrey
auctions are known as second price auctions. Several factors influence the profitabil-
ity of an auction format:

• The risk profile of a bidder influences his bidding behaviour. In first price auctions,
a risk averse bidder will raise his bid slightly to gain a higher probability of

 Revenue Maximising Adaptive Auctioneer Agent 341

winning the auction at the cost of a reduced profit. If the bidders are risk averse
first price auctions will be more profitable [3]. Conversely, if bidders are risk seek-
ing then second price auctions will generate more revenue [4].

• In auctions where the item is a common value or correlated value item and there
are at least three bidders the English auction will produce a greater profit for the
auctioneer than the Vickrey auction, which in turn will produce a greater profit
than the first price auctions. The English auction is the most profitable as the
common value component of a bidder’s valuation can be influenced by the valua-
tions of the other bidders [5].

• If bidders are symmetric then they draw their valuation from the same distribution.
If bidders are asymmetric they draw their valuations from different distributions. It
is difficult to rank the profitability of auctions based on asymmetry as different
variations of asymmetry will each have a different effect on auction revenue [3].

Several experiments have been conducted using online auctions to investigate the
factors that influence the profitability of internet auctions. The experiments yielded
the following results [6, 7, 8]:

• The reserve price increases auction revenue but decreases the probability of a sale.
A reserve price is the minimum price the seller will accept for an item.

• The Dutch auction generated 30% more revenue than the first price sealed bid
auction.

• A high initial price and a longer auction duration results in greater auction revenue.
• A soft auction close is more profitable than a hard auction close. A hard close has a

fixed deadline whereas the deadline is extended in a soft close if a bid is placed in
the closing minutes of the auction.

2 Related Work

Gregg and Walczak have developed an Auction Advisor agent that uses historical
data to make recommendations to both buyers and sellers. The Auction Advisor col-
lects related data from auction sites and derives recommendations from analysing the
collected data and auction research [9]. Pardoe and Stone have developed an autono-
mous adaptive auction mechanism that adjusts the auction parameters in response to
past results. The auction parameters include the reserve price, the auction close, the
auctioneer fees and the minimum bid increment. The adaptive mechanism uses rein-
forcement learning to determine the optimal auction parameters. In a simulation com-
paring the adaptive auction mechanism to a fixed auction mechanism the adaptive
auction mechanism generated greater revenue than any fixed parameter choice [10].
Cliff uses an evolutionary approach where the auction mechanism is defined by the
parameter Qs. At each interval, Qs is the probability that a seller will be chosen to
quote. If Qs = 0.5 the auction mechanism is equivalent to a continuous double auction.
A genetic algorithm is used to explore the space of auction mechanisms. The fitness
function used by Cliff measured the efficiency of the auction mechanism this however
could easily be adjusted to measure auction revenue. Cliff’s experimental results
found that new hybrid auction mechanisms can outperform traditional auction mecha-
nisms in some environments [11].

342 J.C. Pike and E.M. Ehlers

3 RMAA Model

The Revenue Maximising Adaptive Auctioneer (RMAA) agent model is an adaptive,
autonomous agent that selects the auction format and parameters based on an evalua-
tion of the environment and previous auction results. Heuristics from auction theory
and results from internet experiments are used to guide the selection of auction pa-
rameters. The RMAA model consists of an Auction Manager and an Auction Initiali-
sation Module. The Auction Initialisation Module is composed of an Auction Format
Selector (AFS) Component and an Auction Parameter Selector (APS) Component.

Auction Manager

AFS Component APS Component

Auction Initialisation Module

RMAA Agent

Reward parameter selection
based on auction revenueRun auction

Request parameter selection
Evaluator Agent

Auction item

Bidding agent
Bidding agent

Bidding agent

Evaluation

Communication Interface

Fig. 1. The RMAA agent model

3.1 The Auction Manager

The Auction Manager automates the running of the auction. The Auction Manager
will create a new auction using the parameters determined by the Auction Initialisa-
tion Module. The Auction Manager will communicate with the bidders, validate any
incoming bids, record the bid history of the auction and determine the winning bidder.

3.2 Auction Initialisation Module

The Auction Initialisation Module is responsible for selecting the parameters that will
define the auction mechanism. The AFS Component will determine the following as
necessary: the auction format (English, Dutch, Vickrey or First Price Sealed Bid), if a

 Revenue Maximising Adaptive Auctioneer Agent 343

reserve price will be used, if a buy out price will be used and the type of auction
close. The APS Component will determine the value of following parameters as nec-
essary: the reserve price, the auction duration, the buyout price, the initial starting
price and the bid increment.

3.2.1 AFS Component
The AFS Component is implemented using a learning classifier system, more specifi-
cally the Zeroth Level Classifier System (ZCS). A ZCS provides a way to exploit the
existing knowledge about maximising auction revenue while simultaneously discov-
ering new knowledge. A ZCS consists of a database of classifiers which are rules of
the form if condition then action. Rules whose conditions match the current condition
of the environment are placed in the current match set [M]. The classifiers are then
grouped according to action and roulette wheel selection is used to select the action.
The stronger the fitness of the group, the higher the probability the action of the group
will be chosen. All classifiers with the chosen action are placed in the action set [A].
The strength of a classifier is the predictor of the reward it should receive. If the re-
ward received is greater than or less than the classifier strength, the classifier strength
should be updated accordingly. The ZCS introduces new classifiers through the use of
a genetic algorithm as a means of exploring the solution space. The execution of the
genetic algorithm is controlled by the parameter P. On any given turn there is a prob-
ability of P that the genetic algorithm will be invoked. When the genetic algorithm is
invoked, two classifiers will be selected from the classifier population. Two new
classifiers will be created by copying, possibly crossing and mutating the two selected
classifiers. The classifier population must always be kept constant therefore the two
weakest classifiers must be deleted [12].

The AFS has a database of classifiers. The condition portion of a classifier indi-
cates information regarding the bidder environment. The action portion of a classifier
indicates the auction format to be used. The database of classifiers will contain heuris-
tics from auction theory and internet experiments. The AFS requires a description of
the bidder environment from the Evaluator agent. The Evaluator agent will determine
information such as the risk profile of bidders and whether the auction is a common
value or private value auction. The Evaluator agent will implement the model pro-
posed by Zhang et al. to determine the probable risk profile of the typical bidder that
the auction will attract based on the characteristics of the item for sale. Zhang et al.
derived the following formula to determine the risk profile of potential bidders [13]:

Y = 1/6 * HI/50000 + 1/6 * PR/RA – 1/6 * DU/5 + ε . (1)

In formula (1) the potential mean household income required to purchase the item
(HI), the price of the item (PR), the highest price for an item in the same category
(RA) and the durability of the item (DU) are used to determine risk profile. If y is in
the range (0.495, 0.505) the bidders will be risk neutral, if y is greater than 0.505 the
bidders will be risk seeking and if y if less than 0.495 bidders will be risk averse [13].

The Evaluator agent can also use the item for sale to determine whether the auction
will be a common or a private value auction. In private value auctions each bidder’s
valuation for the item is based on their own personal preferences. In common value

344 J.C. Pike and E.M. Ehlers

auctions there is only one value for the item and each bidder will have their own esti-
mate of this value based on their own information. For example a painting purchased
for personal enjoyment only will be a private value auction and a piece of land with
unknown oil reserves will be a common value auction [3]. The Evaluator agent will
send a description of the probable auction environment to the Auction Manager. The
Auction Manager will provide the AFS Component with this description when it
requests the auction format and parameters to be used. The AFS Component will
compare the description against the conditions of the classifiers in the rule base. The
ZCS will then determine which auction format to use and will request any other re-
quired parameters from the APS.

3.2.2 The APS Component
The APS Component must select the optimal value for parameters such as the reserve
price. The reserve price will have a range of possible values. For example it could be
set to 50, 70, 100 or 110 percent of the item’s book value. The APS Component needs
to determine over time which is the most profitable value. The problem of selecting
the most profitable value over time is a k-armed bandit problem. The k-armed bandit
problem revolves around finding the right balance between exploitation and explora-
tion. There are several algorithms than can be used to solve the k-armed bandit prob-
lem. The ε-greedy method will be chosen as it can significantly outperform several of
the more complicated methods [14]. Using the ε-greedy method a random parameter
value will be chosen ε percent of the time. The parameter value with the highest ac-
tion value (the reward associated with a particular parameter value) will be chosen 1-ε
percent of the time.

The RMAA agent model provides several benefits over related research. Firstly it
automates the auction on behalf of the seller instead of just providing recommenda-
tions to the seller. The RMAA agent is designed for a dynamic, real-time auction
environment instead of only for a simulation environment. The RMAA model uses
universally known auction formats and thus embedding strategies into bidding agents
is simple as optimal bidding strategies are well known. The classifier database con-
tains heuristics from auction theory and internet experiments providing the agent with
valuable knowledge. The heuristics enable the auctioneer agent to be effective imme-
diately instead of having to wait for the agent to first learn useful classifiers before it
becomes effective. The RMAA agent is not based on assumptions regarding the bid-
der population instead it aims to adapt to any bidder population. The RMAA model
implements evolutionary learning that will create new classifiers that were not origi-
nally in the classifier database.

4 Implementation

A simulation based on a prototype of the RMAA agent model has been implemented
using the Java Agent DEvelopment Framework (JADE). A population size of 20
classifiers for the AFS has been chosen. The structure of the classifier is defined ac-
cording to the table below.

 Revenue Maximising Adaptive Auctioneer Agent 345

Table 1. A description of the AFS classifier

Auction value
model

Bidder risk
profile

Auction
format

Reserve Price Auction close

Private: 0
Common: 1

Neutral: 00
Averse: 01
Seeking: 10

English: 00
Dutch: 01
FPSB: 10
Vickrey: 11

No: 0
Yes: 1

Soft: 0
Hard: 1

The auction value model and the bidder risk profile describe the condition portion

of the classifier. The auction format, reserve price and auction close describe the
action portion of the classifier. Several classifiers based on heuristics from auction
theory and internet experiments have been inserted into the classifier rule base. The
remaining required classifiers have been randomly generated. The classifiers based on
heuristics are assigned a higher initial strength than the randomly generated classifiers
as they should generate greater revenue. Bidding agents are required as part of the
simulation. Each bidding agent is assigned a valuation drawn from a uniform prob-
ability distribution. The bid value for each agent will be determined using one of the
following Nash equilibrium formulas [13]:

bi = (n-1) / (n) * vi . (2)

bi = (n-1) / (n-1 + ri) * vi . (3)

Formula (2) is the bid function for a risk neutral bidder. Formula (3) is the bid func-
tion for risk averse and risk seeking bidders. n is the number of bidders, vi is the valua-
tion of bidder i, ri is the risk profile of bidder i. A value between 0 and 1 for ri indicates
a risk averse bidder and a value greater than 1 indicates a risk seeking bidder.

JADE has a Directory Facilitator that functions as a yellow pages service enabling
the bidding agents to locate and register with the auctioneer agent. Registering with the
auctioneer agent simply entails sending the auctioneer agent their unique identifier so
that the bidding agents can be notified of any auctions. JADE facilitates message pass-
ing between agents using messages conforming to the FIPA ACL specification. ACL
messages such as inform, propose, accept proposal, reject proposal are naturally suited
to the communication required in an auction. A GUI captures the settings required for
the auction simulation such as the predominant bidder risk profile, the number of bid-
ders and whether the auction is common value or private value. The Auction Manager
creates an auction for an item according to the specification provided by the Auction
Initialisation Module. Once the auction has been created an ACL inform message is
sent to all potential bidders. The bidders will participate in the auction if their valuation
is greater than the reserve price. Once the auction is complete the classifiers in [A] are
rewarded using the following formula derived from [12]:

Cs = Cs + β((bidwin/bkvalue) – Cs). (4)

346 J.C. Pike and E.M. Ehlers

Formula (4) updates the classifier strength using β to control the degree of impact a
new reward has on the classifier strength. β is assigned an initial value of 0.5 to en-
sure that if any initial classifier strengths were inaccurate they will be quickly cor-
rected. Β then steadily decreases to 0.2 over several auction simulations. bidwin is the
winning bid and bkvalue is the book value of the item.

The parameters controlled by the APS Component are the starting price, the re-
serve price, the minimum bid increment and the auction duration. The value of ε in
the APS Component is assigned a high initial value of 0.5 which will slowly decrease
to a constant value of 0.1 over several auction runs. The high initial value of ε will
encourage significant exploration in the early stages which will taper off as more
auction simulations are run. An element of exploration will always remain. The rea-
son for this is that as the bidder population varies over time the action values for each
parameter will change. The APS Component exploits heuristics from internet experi-
ments by using the information to guide the initialisation of the action values for each
parameter. For example a high starting price leads to greater revenue so the action
values of the higher starting prices will be initialized to a greater value than the action
values of lower starting prices.

5 Conclusion and Future Research

Auction theory as well as online auction experiments have proven several heuristics
that are useful in designing an auction mechanism that will result in maximum profit-
ability. No auction mechanism can perform optimally in all environments an auction-
eer agent must thus be able to adapt to different auction environments. The RMAA
agent uses reinforcement learning and evolutionary learning in order to achieve
adaptability. The RMAA agent will select the optimal auction parameters based on
the environment. The RMAA model is based on the standard single unit auctions
namely the English, Dutch, Vickrey and first price sealed bid auctions. Similarly to
single unit auctions, the revenue of multi-unit auctions is also affected by certain
factors. The RMAA model could be extended to include multi-unit auctions as well.
Further research would also be required to develop and implement the Evaluator
agent that must provide the RMAA agent with the required information about the
bidding environment based on the auction item for sale. The ability of the RMAA
agent model to exploit proven heuristics regarding auction profitability provides sev-
eral benefits over related research.

References

1. Gerding, E.H., Rogers, A., Dash, R.K., Jennings, N.R.: Competing Sellers in Online Mar-
kets: Reserve Prices, Shill bidding, and Auction Fees. In: 5th International Joint Confer-
ence on Autonomous agents and Multiagent Systems, New York, pp. 1208–1210 (2006)

2. Milgrom, P.: Putting Auction Theory to Work. Cambridge University Press, Cambridge
(2004)

3. Klemperer, P.: Auction Theory: A Guide to the Literature, Technical report, EconWPA
(1999)

 Revenue Maximising Adaptive Auctioneer Agent 347

4. Monderer, D., Tennenholtz, M.: Optimal Auctions Revisited. Faculty of Industrial Engi-
neering Technion – Israel Institute of Technology (1998)

5. Sandholm, T.: Distributed Rational Decision Making in Multiagent Systems. In: Weiss, G.
(ed.), ch. 5. MIT Press, Cambridge (1999)

6. Lucking-Reiley, D.: Using Field Experiments to Test Equivalence between Auction For-
mats: Magic on the Internet. The American Economic Review 89(5), 1063–1080 (1999)

7. Bryan, D., Lucking-Reiley, D., Prasad, N., Reeves, D.: Pennies from eBay: the Determi-
nants of Price in Online Auctions. Econometric Society World Congress 2000 Contributed
Papers 1736, Econometric Society (2000)

8. Onur, I., Tomak, K.: Impact of ending rules in online auctions: the case of Yahoo.com.
Decis. Support Syst. 42(3), 1835–1842 (2006)

9. Gregg, D.G., Walczak, S.: Auction Advisor: an agent-based online-auction decision sup-
port system. Decis. Support Syst. 41(2), 449–471 (2006)

10. Pardoe, D., Stone, P.: Developing Adaptive Auction Mechanisms. SIGecom Exch. 5(3), 1–
10 (2005)

11. Cliff, D.: Evolution of Market Mechanism Through a Continuous Space of Auction-Types.
In: IEEE Congress on Evolutionary Computation on 2002, Washington, DC, USA, pp.
2029–2034 (2002)

12. Wilson, S.W.: ZCS: A Zeroth Level Classifier System. Evol. Comput. 2(1), 1–18 (1994)
13. Zhang, J., Zhang, N., Chung, J.: Assisting Seller Pricing Strategy Selection for Electronic

Auctions. In: IEEE International Conference on E-Commerce Technology, pp. 27–33.
IEEE Computer Society, Washington (2004)

14. Vermorel, J., Mohry, M.: Multi-armed Bandit Algorithms and Empirical Evaluation. In:
Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS,
vol. 3720, pp. 437–448. Springer, Heidelberg (2005)

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 348–356, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Managing Collaboration Using Agent Based Simulation

Utomo Sarjono Putro, Manahan Siallagan, Santi Novani, and Dhanan Sarwo Utomo

School of Business and Management, Institut Teknologi Bandung Jl. Ganesha No. 10,
Bandung 40132, Indonesia

utomo@sbm.itb.ac.id, manahan_siallagan@yahoo.com,
snovan8@yahoo.com, krigjsman@gmail.com

Abstract. The purpose of the present research is to identify, analyze and simu-
late dynamics of interaction and conflicts among agents using drama theory,
and to apply it in Citarum river basin problem. To accomplish the purpose, we
first model the process in terms of drama theory that is combined with
emotional state model (PAD). One of the reasons why we adopt drama theory is
that it primarily focuses on dilemma or paradox arising from rational goal seek-
ing behavior. It also provides us with rigorous analytical and computational
tools of conflict analysis. Then, we propose a simulation model to describe both
of dilemma of conflict, i.e., persuasion and rejection dilemma among the
agents, and the dilemma of collaboration (trust dilemma) among the agents.
Finally, we conduct agent-based simulation by using SOARS (Spot Oriented
Agent Role Simulator) to obtain some fruitful suggestions for encouraging their
collaboration.

Keywords: Agent based Simulation, Negotiation, Dilemma, Drama Theory,
Emotion.

1 Introduction

Citarum River basin is a region in Java Island, Indonesia, with 6,080 km2 area
involving the three provinces, i.e., West Java, Banten, and Jakarta. The annual pre-
cipitation depth is 3,000 mm/year in the mountain and 2,500 mm/year in lowland.
Relative humidity is 80% and daily temperature is 25○C in the lowland and 18○C in
the mountain. Citarum River is connected with 4 rivers to the west and 4 rivers to the
east in West Java. In the past, Citarum river was clean, but now the condition had
changed totally [17].

There are some factors which cause the problem, i.e.; illegal lodging and the popu-
lation explosion in upper stream, and household waste in down stream. Agent in the
Citarum problem has different interests and positions. There are several agents who
participate in Citarum river basin, i.e. local people in downstream, local people in
upstream, textile industries, environmentalist (green), regencies in upper stream and
cities in down stream [19].

In negotiation process, agents may change their position and interests; accordingly,
the situation is dynamic. There are some impediments (or dilemma) to achieve com-
mon position and trustworthy (i.e., collaboration). Based on the previous research

 Managing Collaboration Using Agent Based Simulation 349

[16], the effect of positive emotional state of agent is important to make negotiation.
The results from simulation show that number of dilemma among agent could be
reduced significantly or even have no dilemma.

Fig. 1. Citarum River Basin Region

Fig. 2. Agents in Citarum River Basin Problem

In this research, we add a conceptual model for affiliation that is affiliate tendency.
It was defined in terms of generalized positive social expectations and associated
positive behaviors in social interactions with others.

Although dilemma of confrontation has been eliminated, dilemma of collaboration
often still remains. Affiliate tendency is tendency to cooperate with other agent. It
causes a new problem among the agent that is trust dilemma. How does each agent
eliminate the trust dilemma? This paper will propose a simulation model of
negotiation process involving dilemma of conflict and trust among the agents. Then
we conduct agent-based simulation by using SOARS (Spot Oriented Agent Role Simu-
lator) to obtain some fruitful suggestions for encouraging their collaboration.

Cities
in down stream

Local
People

in upper
streams

CITARUM

Regencies
in

the upper
stream

Textile in-
dustries

Local
People

in down
streams

Envi-
ronmentalist

(Green)

350 U.S. Putro et al.

2 Drama Theory in Citarum River Basin Problem

Drama Theory is a metaphor of dynamic confrontation process. This paper adopts the
metaphor, and starts with the build up stage of interaction among agents in Citarum
riverbasin problem. Common reference frame resulted from the stage is described by
Fig. 3. The common reference frame consists of agents/participants, their options,
positions (proposals), and threat.

Fig. 3. Common references frame in Citarum river basin problem

3 Agent Based Modeling in Drama Theory

The purpose of this paper is to identify, analyze and simulate dynamics of interaction
and conflicts among the stakeholders (or agents) in the Citarum river negotiation
process. They claim their strategies and interests as well as express emotion. To ac-
complish the purpose, we first model the process in terms of drama theory that is
combined with emotional state model (PAD). One of the reasons why we adopt drama
theory is that it primarily focuses on dilemma and also provides us with rigorous
analytical and computational tools of conflict analysis. Then we conduct agent-based
simulation by using SOARS. In this paper, we only discuss emotion model and
temperament model (affiliative tendency). The detail of agent based modeling in
drama theory could be find in the previous research [16].

 Managing Collaboration Using Agent Based Simulation 351

3.1 Emotion Model and Affiliative Tendency

Emotion model that will be used in this paper is the development from emotional nego-
tiation model PAD [9]. Emotional state model (PAD) involves three dimensions, i.e.,
Pleasure (rp), Arousal (ra) and Dominance (rd). During negotiation, a more pleasant

agent tends to compromise with others. Each agent has the emotional state [9], i.e.:

},,{ dapi rrrEs = ;)1,1(,, −∈dap rrr (1)

Based on the previous paper [11], angry is coded by {-.51, .59, .25}, bored is {-.65,
-.62, -.33}, curious is {.22, .62, -.01}, dignified is {.55, .22, .61}, elated is {.50, .42,
.23}, hungry is {-.44, .14, -.21}, inhibited is {-.54, -.04, -.41}, loved is {.87, .54, -
.18}, puzzled is {-.41, .48, -.33}, sleepy is {.20, -.70, -.44}, unconcerned is {-.13, -
.41, .08}, and violent is {-.50, .62, .38. Each agent i has the function of emotional
state [9], which is:

dapdapi rrrrrrSe −+=)1.(),,((2)

For example, if an agent has emotional state defined as {−0.51, 0.59, 0.25}, then func-
tion of emotional state is 0609.125.0)59.01.(51.0)r,r,r(Se dapi −=−+−= .

Affiliate tendency was defined in terms of generalized positive social expectations
and associated positive behaviors in social interactions with others. An individual’s
emotional states are inferred from averages of his or her emotional states across repre-
sentative samples of everyday situation. Thus, the previous paper [12] proposed that
emotional traits could also be described in terms of the pleasure-displeasure, arousal-
nonarousal, and dominance-submissiveness dimensions. Then, affiliate tendency
scales were defined as follows:

ijijijij rdrarpnAffiliatio 3.024.046.0 ++= (3)

Within the present theoretical perspective, then, it is important to conceptualize
and measure affiliate tendency as pure generalized interpersonal positive ness without
either an inclination to want to dominate and control others or to be dominated and
controlled by others.

3.2 Modeling to Eliminate Trust Dilemma

To eliminate trust dilemma in collaboration stage, we use affiliate tendency value.
First, we calculate probability of cheating and punishing another agent who cheated.

minmax

max)(Pr
VV

affV
iob i

−
−

= (4)

maxV is maximum value of affiliate tendency (1.00); minV is minimum value of affiliate

tendency (-1.00) and iaff is affiliate tendency for agent i. The higher probability is the

higher probability of the agent to punish another agent who cheated. In contrast, the
lower probability is the higher probability of the agent to cheat.

352 U.S. Putro et al.

Based on norm game [1], agent i will attempt to cheat the commitment
if randiob >)(Pr , where rand is random value which is generated from uniform

distribution in range [0,1]. For each agent j (ij ≠), he/she will attempt to punish

agent i if randjob <)(Pr . If agent i cheat, then agent i’s payoff will increase by 1

%, while the payoff of other agents will decrease by 1%. If agent i cheat and agent j
punish, then payoff of agent i will decrease by 10%.

4 Simulation Using SOARS and Result

In order to simulate this problem, we use SOARS to describe the initial frame for Cita-
rum river basin problem as seen in figure 3. There are so many dilemmas in the common
frame. Based on the previous research [16], we can eliminate the dilemma of conflict. In
this current paper, we assume that bargaining strategy of agent was same, that

is ssti = ts∈ . We make four experiments to look measure level of emotional state, so

the agent could negotiate in order to reduce dilemma and to eliminate trust dilemma.

4.1 First Scenario

In this scenario, whole of agents have positive emotion. USR is having a strong desire
to know about something, G is having strong feeling of deep affection for something,

Table 1. Parameters in Scenario 1

USR G TI DSP USP DSC

pr 0.22 0.87 0.5 0.2 0.55 0.55

ar 0.62 0.54 0.42 -0.7 0.22 0.22

dr -0.01 -0.18 0.23 -0.44 0.61 0.61

Sei 0.3364 1.5198 0.48 0.5 0.0610 0.0610

Fig. 4. Probability of Affiliate tendency in Scenario 1

 Managing Collaboration Using Agent Based Simulation 353

TI is excitement, USP is calm, DSP is quiet and DSC is calm. In this scenario, we use
the parameters as described in Table 1, and then the probability of affiliate tendency
could be seen in figure 4.

From figure 4, we can see that the probability of affiliative tendency for each agent
is close to 1, it means that no agent will cheat the commitment, because affiliate ten-
dency is positive and the value is large. Each agent will avoid cheating because the
other agent can punish him/her.

4.2 Second Scenario

In this scenario, number of agent who has positive emotion is more than number of
agent who has negative emotion, and level of emotional state for agent with negative
emotion is low. USR, USP, DSP, DSC and TI have positive emotion, meanwhile G
has negative emotion. USR and DSC are excitement, USP and DSP have strong feel-
ing of deep affection for something and TI is calm, G is not worried. In this scenario,
we use the parameters as described in Table 2, and then the probability of affiliate
tendency could be seen in figure 5.

Table 2. Parameters in Scenario 2

USR G TI DSP USP DSC

pr 0.5 -0.13 0.55 0.87 0.87 0.5

ar 0.42 -0.41 0.22 0.54 0.54 0.42

dr 0.23 0.08 0.61 -0.18 -0.18 0.23

Sei 0.48 -0.1567 0.061 1.5198 1.5198 0.48

Fig. 5. Probability of Affiliate tendency in Scenario 2

From figure 5, we can see that the probability of affiliative tendency for each agent
is close to 1, it means that no agent will cheat the commitment, because the affiliate
tendency is positive and the value is large. Each agent will avoid cheating because the
other agent can punish him/her.

354 U.S. Putro et al.

4.3 Third Scenario

In this scenario, number of agent who has positive emotion is more than number of
agent who has negative emotion, and level of emotional state for agent with negative
emotion is moderate. USR, USP, DSP, DSC and TI have positive emotion, meanwhile
G has negative emotion. USR and DSC are excitement, USP and DSP have strong
feeling of deep affection for something and TI is calm, and G has a strong desire for
something. In this scenario, we use the parameters as described in Table 3, and then
the probability of the affiliate tendency could be seen in figure 6.

Table 3. Parameter in Scenario 3

 USR G TI DSP USP DSC

pr 0.5 -0.44 0.55 0.87 0.87 0.5

ar 0.42 0.14 0.22 0.54 0.54 0.42

dr 0.23 -0.21 0.61 -0.18 -0.18 0.23

Sei 0.48 -0.2916 0.061 1.5198 1.5198 0.48

Fig. 6. Probability of Affiliate tendency in Scenario 3

From figure 6, we can see that the probability of affiliative tendency for each agent
is close to 1, it means that all agents will keep their commitment, because affiliate
tendency is positive and the value is large. Each agent will avoid cheating because the
other agent can punish him/her.

4.4 Fourth Scenario

In this scenario, number of agents who have positive emotion is more than number of
agents who have negative emotion, but level of emotional state for negative emotion
is high. USR, USP, DSP, DSC and TI have positive emotion, meanwhile G has nega-
tive emotion. USR and DSC are excitement, USP and DSP have strong feeling of
deep affection for something, TI is calm, and G is angry. In this scenario, we use the
parameters as described in Table 4, and then the probability of affiliate tendency
could be seen in figure 7.

 Managing Collaboration Using Agent Based Simulation 355

Table 4. Parameter in Scenario 4

 USR G TI DSP USP DSC

pr 0.5 -0.5 0.55 0.87 0.87 0.5

ar 0.42 0.59 0.22 0.54 0.54 0.42

dr 0.23 0.25 0.61 -0.18 -0.18 0.23

Sei 0.48 -1.045 0.061 1.5198 1.5198 0.48

Fig. 7. Probability of Affiliate tendency in Scenario 4

From Figure 7, we can see that the probability of affiliative tendency for each agent
is close to 1, it means that no agent will cheat the commitment, because affiliate ten-
dency is positive and the value is large. Each agent will avoid cheating because the
other agent can punish him/her.

5 Conclusion

From the results of simulation, we showed how the emotional states and affiliate
tendency of agents significantly affect the negotiations process. In the collaboration
stage, to maintain the commitment, each agent must be willing to punish the other
agent who attempt to cheat. The effect of positive emotional state of agent and the
affiliate tendency is important to maintain collaboration.

The results suggests that each agent should have a positive emotion and positive af-
filiate tendencies in order to achieve collaboration in the Citarum riverbasin problem.

References

1. Axelrod, R.: The Complexity of Cooperation. Agent-Based Models of Competition and
Collaboration. Princeton University Press, Princeton (1997)

2. Bryant, J.: The Six dilemmas of Collaboration. John Wiley, Chichester (2003)
3. Barteneva, D., Lau, N., Reis, P.L.: Implementation of Emotional Behaviors in Multi Agent

System Using Fuzzy Logic and Temperamental Decision Mechanism. In: Proceeding
Fourth European Workshop on Multi Agent Systems (2006)

356 U.S. Putro et al.

4. Bradley, M.M., Codispoti, M., Dean, S., dan Lang, P.J.: Emotion and Motivation II: Sex
Differences in Picture Processing. Emotion 1(3), 300–319 (2001)

5. Howard, N.: Negotiation as Drama: How Games Become Dramatic. International Negotia-
tion 1, 125–152 (1996)

6. Howard, N., Bennet, P., Bryant, J., Bradley, M.: Manifesto for a Theory of Drama and Ir-
rational Choice. Systems Practice 6(4), 429–434 (1993)

7. Howard, N.: Drama Theory and its Relation to Game Theory: Part One. Group Decision
and Negotiation 3, 187–206 (1994a)

8. Howard, N.: Drama Theory and its Relation to Game Theory: Part Two. Group Decision
and Negotiation 3, 207–235 (1994b)

9. Jiang, H., Vidal, J.M., Huhns, M.N.: Incorporating Emotions into Automated Negotiation.
University of South Carolina, Columbia (2004)

10. Maulana, F.: Menyelamatkan Hutan Tatar Sunda, Kompas Online 12 Mei (2004)
11. Mehrabian, A.: Questionnaire measures of affiliative tendency and sensitivity to rejection.

Psychological Reports 38, 199–209 (1976)
12. Mehrabian, A.: Analysis of Affiliation Related Traits in Term of PAD Temperament

Model. The Journal of Psychology 131, 101–117 (1997)
13. Putro, U.S.: Adaptive Learning of Hypergame Situations Using a Genetic Algorithm. IEEE

Transactions on Systems, Man, and Cybernetics 30(5) (2000)
14. Putro, U.S., et al.: Agent Based Modeling and Simulation of Knowledge Management. In:

Proceeding IFSR (2005)
15. Putro, U.S., et al.: Drama Theory sebagai Model dari Dinamika Konflik dalam Permasala-

han DAS Citarum. Jurnal Manajemen Teknologi 4(2) (2005)
16. Putro, U.S., et al.: Role of Emotion in Negotiation Process: An Application of Drama The-

ory in Citarum River Basin Problem. International Society of System Science (2007)

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 357–369, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Using Agent-Based Simulation of Human Behavior to
Reduce Evacuation Time

Arief Rahman, Ahmad Kamil Mahmood, and Etienne Schneider

Department of Computer and Information Science, Universiti Teknologi PETRONAS,
13750 Tronoh, Perak, Malaysia

rahmanarief@gmail.com, {kamilmh,dr_schneider}@petronas.com.my

Abstract. Human factors play a significant part in the time taken to evacuate
due to an emergency. An agent-based simulation, using the Prometheus meth-
odology (SEEP 1.5), has been developed to study the complex behavior of hu-
man (the ‘agents’) in high-rise building evacuations. In the case of hostel
evacuations, simulation results show that pre-evacuation phase takes 60.4% of
Total Evacuation Time (TET). The movement phase (including queuing time)
only takes 39.6% of TET. From sensitivity analysis, it can be shown that a re-
duction in TET by 41.2% can be achieved by improving the recognition phase.
Emergency exit signs have been used as smart agents. Modified Ant Colony
Optimization (ACO) was used to determine the feasibility of the evacuation
routes. Both wayfinding methods, the ‘familiarity of environment’, which is the
most natural method, and the ACO method have been simulated and compari-
sons were made. In scenario 1, where there were no obstacles, both methods
achieved the same TET. However, in scenario 2, where an obstacle was present,
the TET for the ACO wayfinding method was 21.6% shorter than the one for
the ‘familiarity’ wayfinding method.

Keywords: Evacuation planning, Prometheus methodology, multi-agent simu-
lation, Ant Colony Optimization, and cognitive behavior.

1 Introduction

The owners of high-rise buildings must have a thorough plan for coping in the event
of a disaster, such as fire, earthquake, bomb treat, etc. These plans must take into
account the large number of occupants. Measures must be in place to prevent a situa-
tion from escalating. There must be adequate emergency facilities. Safe egress of
occupants is of paramount importance [1].

The higher the number of occupants of high-rise building, the more attention
should be given by building management to the safety regulations. Detailed calcula-
tions, based on a simulation or other modeling process, are required in order to appre-
ciate the effect that building layout has on the evacuation process.

Even a single evacuation drill involving most of the occupants can be expensive.
Furthermore, there is an inherent lack of realism, and, therefore, only limited confi-
dence can be placed in any data gathered [2]. A computer based evacuation model has
the potential of addressing these shortcomings.

358 A. Rahman, A.K. Mahmood, and E. Schneider

The time taken to evacuate is the primary measure in assessing the effectiveness of
an evacuation process [3]. Human, as the occupants of high-rise building, with varied
behaviors and experiences, are the main actors in any evacuation process [4]. The
complex human behaviors should be considered as the main factor in determining the
time to evacuate. Some behaviors are potentially problematic and/or time wasting [5].

[6] has introduced an approach to model human cognitive behavior in the very be-
ginning of a fire emergency. This human cognitive behavior model presents the pre-
evacuation phase where most existing simulators has not completely presented.
Moreover, [7] presents real evacuation drill data in four apartments where 50% of
TET is lost during pre-evacuation phase. The author stated that occupants tend to
ignore the fire alarm and are slow in responding to the emergency notification by
continuing their activities. Unfortunately, different building complexity will have
different characteristics of pre-evacuation time consumption.

The most complex aspect of people movement in an emergency condition is the
approach to select the shortest way out from multi-exit ways in the high-rise building
[8]. Other than the physical factors, there are some behavior-affected factors on mak-
ing decision to choose the available routes. These are: familiarity of building envi-
ronment (cognitive map) [8] [4]; interaction and cooperation within the group [4];
leadership factor among the occupants [9]; etc. Guidance or instruction is necessary
and important for occupants in panic situations. Exit signs are one type of guidance to
find the alternative routes but it is only a static label. A leader among a group of
evacuees can also offer guidance and the response from the followers will be higher
than with using an exit sign [10]. Unfortunately, it is not simple to find the leader in
every occupant group during a panic situation. Most occupants tend to act more indi-
vidually and lack the leadership skill to guide others.

The human cognitive behavior model built in the simulation presents the study
over lengthy time periods during the pre-movement phase. In order to improve the
wayfinding method, this paper also presents a comparison between the ACO wayfind-
ing method and the ‘familiarity of environment’ wayfinding method.

2 Related Works

Since the last four decades, there has been a tremendous growth in computer simula-
tion and modeling of evacuation planning in high rise buildings. Most of the existing
evacuation simulators, such as SGEM [1], SIMULEX [14], EVACNET [23], and
building-EXODUS [25], specifies the maximum number of saved evacuees and
minimum TET as the two main parameters of an evacuation process.

The development in the study of human behavior in pre-evacuation is not as fast as
the development of evacuation simulators. With agent-based system, [4] has devel-
oped a prototype of model for non-adaptive crowd behavior, including some behavior
in pre-evacuation phase. A cognitive behavior model has been proposed by [6] with a
probabilistic decision tree model to represent some human behaviors during pre-
evacuation. Unfortunately, this cognitive behavior model has not been developed into
computer simulation.

Multi-agent based systems have been found sufficient to represent the complex
human behavior and decision making process. [4] has developed a multi-agent simu-
lation as a basic scheme in evacuation planning where some human behaviors were

 Using Agent-Based Simulation of Human Behavior to Reduce Evacuation Time 359

attached to the agent. In order to study the leadership contribution to the evacuation
process, [10] has introduced a leader in the simulator. The multi-agent system has
been modified to represent the interaction among leaders and other occupants. An-
other application of multi-agents is presented by [9] to simulate the leader behavior
during evacuation. An agent leader has the capability to lead the other occupants to
perform high-level wayfinding by obtaining the cognitive map of a building. The
leadership aspect and other human responses during an evacuation process have also
been represented by [12] using an agent in virtual participatory simulation.

3 Evacuation Phases

There are two main phases in an evacuation process i.e., pre-evacuation phase/response
and movement phase/evacuation [13] [14]. The main parameter of emergency evacua-
tion is TET [24]. TET is formed by three time components namely response time (trest)
or pre-evacuation time (PeT), moving time (MT) and waiting time (WT).

Ignition
Detection

TOTAL EVACUATION T IME (TET)

ALARM
RING

Recognition
(On)

Start to
egress (Se)

Investigating
path (Cp) Start Waiting

(Queuing)
ARRIVING AT

ASSEMBLY
POINT

Pre-evacuation Time (PeT) Moving time (MT)

Waiting
time
(WT)

Start
walking

Fig. 1. Evacuation time line, where TET starts from the alarm ring event

4 Human Behaviors in Evacuation Process

4.1 Panic

Life threatening situation in the event of fire or any other disaster can be a triggered
event of panic, which could possibly lead to accidents or casualties of human lives
because of crushing or trampling [15]. When some clues are received followed by a
perception of a dangerous situation, people often act irrationally unless they have a
strong positive social personality such as leadership capability [4]. People who fall
into panic, usually lose their judgement and may cause uncontrolled evacuation proc-
ess. In such situations, the availability of guidance will reduce the panic behavior.

In a panic situation, people move with dynamic movement where the velocity is
influenced by some particular force. The dynamic movement is determined by the
acceleration of movement. According to [15], there are two forces that influence the
movement, i.e. socio-psychological and physical forces. The dynamic movement
represents the direct interaction between human and the physical object in the building.
The acceleration equation (1) describes the change of people’s velocity with time t.

360 A. Rahman, A.K. Mahmood, and E. Schneider

∑∑ ++
−

=
≠ W

iW
ij

ij
i

iii
i

t

i
i ff

tvtetv
m

d

dv
m

)(

00)()().(

τ
 (1)

while the change of position ri(t) is given by the velocity vi(t)=dri/dt.

4.2 Wayfinding

Quoted from [9], “Wayfinding is the process of determining and following a route to
some destination”. This process needs the cognitive component of navigation and
building knowledge to determine the route from initial position to targeted position.
[4] has classified the individual decision making process during an evacuation into
three basic conventions, those who follows instinct, follows experience and bounded
rationality.

Following instinct is the most primitive decision by people in making instantaneous
and quick response [4]. Naturally, human are able to retrieve their past experiences and
follow their habitual activities or repetitive events in making decision. During an
evacuation process, the previous experiences of the occupants have a significant effect
on their responses to the emergency situation in the building [4]. The familiarity of
building environment, some knowledge related to safety procedures and evacuation
drill experiences are some experiences that directly influence their decisions during an
emergency situation.

4.3 Ignoring Immediate Leaving

To date, few studies in existing literatures have observed and analyzed human behav-
ior during pre-evacuation phase. Whereas, previous observations of actual evacuation
drills show that some behaviors such as saving valuable items, saving important
documents have caused time wasting during pre-evacuation phase. According to
OSHA standard procedure, once the emergency status is announced, all the occupants
excluding safety officer or floor warden must evacuate immediately from the build-
ing. On the contrary, some previous studies presented by [1], [7] and [11] and also our
evacuation survey result show that most occupants will not heed to the emergency
notification. This behavior is termed as ignoring immediate leaving.

5 Agent-Based Modeling

5.1 Prometheus Methodology

Prometheus, a methodology to construct multi-agent systems and the detail compo-
nents of agents [17], can be classified as a top-down approach. The Prometheus meth-
odology is a refined system that includes from system objective to detailed planning
of each agent as a systematic hierarchy breakdown. There are three main phases in
Prometheus i.e. system specification, architectural design and detailed design [17].

Even though there have been several tools and methodologies introduced for agent
systems development, it is not recommended to select one particular methodology as
being the best. In fact, the type of problem and scope of application should be considered
before selecting the most suitable methodology [18]. Prometheus has a systematic phase

 Using Agent-Based Simulation of Human Behavior to Reduce Evacuation Time 361

to build intelligent agents [19]. From the scale of details point of view, Prometheus has
provided a complete phase with detailed specification and it has a clear concept to repre-
sent agent with high autonomy and mental attitude [18]. From some practical parameters,
i.e. clear notation, ease of learning, ease of use, adaptability, traceability, consistency, and
refinement, Prometheus methodology has fulfilled those standard criteria [19].

5.2 Model Development

Prometheus design tool (PDT) version 3.1 [20] has been applied to ensure that the de-
velopment of evacuation system are appropriate with Prometheus methodology’s role.

5.2.1 System Specification
The simulation of emergency evacuation in a multi-level building has some complex
aspects that need to be considered such as occupant with unique behaviors. [4]. There-
fore, it is necessary to define the specification of the evacuation system so that the
scope of study becomes more focused and directed. Fig. 2 shows an overview of a
system specification.

Occupant DB

Exit EmergencyOccupant

Building DB

Physical Obstacle status
& coordinate

Show Feasible Route

Prepare or Rescue

Choose the Route

Emergency Alarm Ring

Order to evacuate

Environment Condition

Familiarity and Experience

Walking Speed

Decide to Evacuate

Feasible Routes

Queuing status &
coordinate

Fig. 2. An overview of an evacuation system

Goal Overview. There are 2 main goals to be achieved in the evacuation process [3],
i.e., minimizing TET (Goal #1) and maximizing the number of evacuees (Goal #2).

Functionalities. There are four defined functionalities to manage and operate the
interaction during simulation in order to achieve the goals. The first function i.e.,
calculate number of people in queue has the function to control the length of queue
and calculate the utilization of building spaces. Functionality #2, identify physical
obstacle has the function to identify the location of fire or other damages in the
building in order to avoid any potential accidents. Determine the feasible route; func-
tionality #3 is an important function to maximize the number of saved evacuees by
calculating the most feasible route. Operating and managing people’s response to
alarm warning system is the function of order people to evacuate (functionality #4).

Scenarios. The first scenario, leaving immediately, has been developed to describe
some actions that will be taken by occupants when the emergency alarm rings. This
scenario is triggered by the emergency alarm and is influenced by the familiarity of
environment or experience of occupants. The second scenario, finding an obstacle,
has been created to provide some actions taken by the emergency system when an

362 A. Rahman, A.K. Mahmood, and E. Schneider

obstacle appeared in the building. The system will obtain some information from
sensors in the building to identify the obstacle such as queuing obstacle, physical
obstacle and environmental conditions.

5.2.2 Architectural Design
A complex design of multi-agent system specification has been incorporated into the
architectural design phase. Occupants are defined as the agents in the evacuation
process, who are capable to response, react, interact and perhaps reject each other.
The emergency exit sign has been modified to be a dynamic agent, which is able to
determine the feasible route. There are 7 percepts that have been introduced into the
evacuation system and 6 have been set into simulation as depicted in fig.2.

The interaction between agent staircase, corridor/hall and agent emergency exit
has been provided by protocol physical obstacle status (protocol #1). The message of
obstacle status is updated continually to agent emergency exit. Protocol #2 (location
of occupant) also shows the interaction between agent staircase, agent corridor/hall,
and agent emergency exit sign. A message and coordinate of each occupant is pro-
vided and updated by agent staircase and agent corridor/hall. Protocol #3, feasible
route, connects the agent emergency exit and the agent occupant. Agent emergency
exit sign periodically sends the message of feasible route to agent occupant.

5.2.3 Detailed Design
Detail structures and components of agent are provided in this part of the model.

Agent Emergency Exit Sign. Feasible route determination in evacuation planning
performed by agent emergency exit sign will support the main objective of the simu-
lation i.e. getting minimum TET. When the simulation clock starts, this agent will
receive some information related to the location of each occupant and obstacles from
other agents.

The capability of feasible route determination is built with the Ant Colony Algo-
rithm [21], which enables the determination of the feasible route by calculating the
shortest route and avoiding potential obstacles that appear in the building. The infor-
mation concerning the feasible route is transmitted to agent occupants by sending a
message to all exit signs in the building.

The Ant Colony Algorithm as a plan inside the feasible route determination capa-
bility is designed to obtain some input regarding occupant location, distance to as-
sembly point and building specification. In order to apply ACO on agent emergency
exit sign, a new factor (ωij) is added by considering some physical obstacles in the
building to be evacuated such as fire location, damaged facilities, bottleneck problem
and obstacle on the exit corridor [22]. A route with low probability, where a physical
obstacle has appeared, should not be chosen. A modified transitional probability rule,
as given in equation (2), determines the next route that will be chosen by an ant.

∑
=

kallowedk ijij

ijijk
ij tp

ε
λβα

λβα

ωητ
ωητ

].[].[][

].[].[][
)((2)

Where α, β, λ are parameters that control the relative importance of those 3 variables
of transitional probability rule.

 Using Agent-Based Simulation of Human Behavior to Reduce Evacuation Time 363

Algorithm 1. Procedure ‘Ant Colony Algorithm’
Connect to Occupant DB
Connect to Building DB
Read initial location of occupant
Read initial Obstacle status
Read walking speed
Calculate distance between nodes
Set number of cycle
Set number of ants=total number of occupants
Set initial pheromone, i to j
Set initial probability function, i to j
For i=1 to number of occupant
 Place ants to location of occupant
 Set pheromone, i to j
 Update pheromone, i to j
Update obstacle status
Calculate probability function, i to j
 Update probability function, i to j

 Choose appropriate value of probability function
Move ant to next node

 If ant arrive at assembly point then
 Update the distance of trip
 Update number of circle
 If distance of trip = shortest route then
 Set shortest route = distance of trip
 End if
 End if
Next i
Send feasible route through protocol

Agent Occupant. As the main actor in the simulation, the proactive behavior of agent
occupant is represented by the agent’s ability to response to any changes within
the environment. Occupant movement control is built inside the response and move
capability.

The response and move capability is divided into pre-evacuate response and move-
ment and interaction capabilities. Certain roles that determine the response by agent
occupant, has been built inside the pre-evacuate response capability by applying
certain probabilistic values. According to [6], a method to assess human cognitive
behavior in evacuation is applied to the system and the Single Value Network (SVN)
to start egress motion is attached to the simulation.

The movement and interaction capability determines the movement speed of the
occupant and represents the interaction among the occupants. The acceleration of
people movement in panic [15] is applied in this capability.

5.3 Simulation Setup

One of the student’s hostels at our university has been chosen as a case problem for
simulation. This building has 4 stories, each floor has 4 blocks of rooms, each block
has 6 rooms (excluding 1 bathroom and 1 kitchen in every block), and each room
has 2 occupants. In this simulation, each person is defined as male with an average
height of 160 cm and walking speed of 1.8 m/s. The average body size is 0.5m x 0.5m

364 A. Rahman, A.K. Mahmood, and E. Schneider

(a square). Other physical attributes can be adjusted by modifying some input on
SEEP 1.5. The maximum number of occupants involved is 180 occupants and this
number represents the actual number of occupants in the hostel.

5.4 Validations

A simulation model is a means to represent the problems in real world into conceptual
model. SEEP 1.5 is validated by using the black-box validation process where actual
walking time was compared with the walking time produced by the simulator. A sec-
ond validation was also carried out using EVACNET 4 [23]. A comparison between
SEEP 1.5 and EVACNET 4 shows that there are no significant differences between
the two. The walking time produced by SEEP 1.5 almost matches the real walking
time. SEEP 1.5 performed the simulation as well as EVACNET 4.

6 Simulation Results

6.1 Pre-evacuation Study

An evacuation survey was conducted to obtain some information related to possible
actions by the occupants upon hearing the emergency alarm notification. The prob-
ability values of pre-evacuation actions on SVN (Single Value Networks) model are
defined as follows: leaving probability (pon) = 0.278, preparing probability (pse) =
0.647, and choosing probability (pcp) = 0.471. Those probability numbers were ap-
plied on SEEP 1.5 to generate the pre-evacuation time of each occupant.

In most cases, the pre-evacuation time tends to be skewed because some occupants
may take longer time to response while others may respond faster. In the case of hostel
evacuation, the simulated pre-evacuation time is in good fit with the Weibull distribution.

Fig. 3. Time proportion for each phase in hostel evacuation

As seen in fig. 3, TET is divided into 3 components of time. On average, time to
prepare or pre-evacuation time reaches more than 50% of TET, while time to move
takes around 40% of TET and time to queue only takes around 10% of TET. Com-
pared with the experimental results obtained by [7], this simulation result shows a
similar characteristic of time consumption. ‘Ignoring the emergency alarm notifica-
tion’ (recognition phase) takes the longest time during pre-evacuation or 24.8% of

 Using Agent-Based Simulation of Human Behavior to Reduce Evacuation Time 365

TET. Occupants also required a long period of time (21.1% of TET) to save their
valuable items before leaving the building and ‘Investigating the path’ takes 14.5%
of TET.

6.2 ACO Wayfinding

In the hostel simulation, emergency exit sign has been modified as a smart agent,
where ACO was embedded in the emergency exit agent. ACO functions to determine
the feasible route based on some percepts received from the building based on a real
time situation.

(A)

(B)

Fig. 4. A comparison between ‘familiarity of environment’ wayfinding method and ACO way-
finding method, without obstacle (A) and with obstacle (B)

366 A. Rahman, A.K. Mahmood, and E. Schneider

6.2.1 Scenario 1 (Wayfinding Methods Comparison without Obstacle)
The first wayfinding method, familiarity of environment, generally follows the occu-
pant’s routine and the most common choice is to take the staircase and exits, nearest
to their current position. Usually, the taken route follows the familiarity of environ-
ment in a normal situation and is straight forward. This route should be taken because
it is the shortest route formed by their daily experience.

The hypothesis of this scenario tends to compare the performance of those two dif-
ferent wayfinding methods. The total movement time is measured as the main com-
parison parameters. From the simulation result and based on t-test result, it can be
interpreted that there is no significant different in movement time perform by both
wayfinding. Figure 4. A shows that in the absence of obstacles, the simulation results
give the same route either with ACO or familiarity of environment methods.

6.2.2 Scenario 2 (Wayfinding Methods Comparison with an Obstacle)
As described in fig. 4, the obstacle has impeded the path through the left staircase L2
- L1 (level 2 to level 1). That obstacle has forced the occupants to choose that route
and turned back through another staircase on the right side.

With familiarity wayfinding method, some occupants were trapped on the left stair-
case L2-L1 and had to turn back to the right side, thus creating a bidirectional crowd
flow on the right staircase. Using ACO wayfinding method, most of the occupants
were able to avoid the obstacle and selected the route through right staircase L2-L1
directly. The ACO has considered the position of the obstacle and hence avoided the
blocked route.

Based on t-test result, total movement time due to familiarity of environment way-
finding method is significantly different from the total movement time guided by
ACO wayfinding method. In the case of hostel evacuation, the average clearance time
taken by familiarity wayfinding method is 21.6% longer than the average clearance
time taken by ACO wayfinding method.

7 Discussions

Based on our evacuation survey and previous observation reports, the occupants are
usually slow in responding to emergency alarm notification. Some completely ignore
the signal and continue their activities even after the alarm has rung. As stated by
[16], there are three possible reasons why people ignore the alarm signal, i.e.: failure
to recognize the alarm signal as an emergency alarm, disbelieve of the emergency
system because of occasional nuisance alarms, and unable to hear the emergency
warning through the alarm.

There are some examples of nuisance alarm, such as false alarm, alarm in the event
of evacuation drill, and test alarm. Since many nuisance alarms sounded in the build-
ing, the occupants might assume that the alarm signal is a false alarm. Our survey
results show that 30% of sounded alarm ring in the event of evacuation drill and 25%
sounded alarm ring because of false alarm. This condition reduces the people’s confi-
dence and trust level of the emergency system. Therefore, a high precision emergency
detection device should be installed by building management in order to prevent nui-
sance alarm.

 Using Agent-Based Simulation of Human Behavior to Reduce Evacuation Time 367

Leaving probability and choosing probability sensitivity were studied to measure
their effect on TET by setting a constant preparing probability. With reference to
hostel evacuation, if the building management had been able to notify all occupants
for immediate evacuation once the alarm rings (leaving probability = 1 or recognition
time ≈ 0), then there will be an opportunity to reduce the TET by ± 41.2% (compared
to normal conditions where leaving probability = 0.28).

In the above experiments, the two wayfinding methods have been compared and
the simulation results show that ACO wayfinding has a shorter clearance time than
familiarity of environment wayfinding. When physical obstacle(s) appeared in the
building, untrained occupants with less experience and inability to locate the position
of the physical obstacle might be trapped at the impeded location. Based on the most
possible conditions and also from simulation scenario 2, it is recommended that
evacuation plan must be prepared to handle the worst condition inside a high-rise
building, emphasizing especially on the preparedness for dynamic evacuation.

Achieving minimum TET is associated with successful evacuation process, which
means that more people can be evacuated safely. In normal situation, the path formed
by the daily routine movement forms the shortest exit of the building. However, in an
actual emergency situation, when obstacles must be considered, the shortest route
does not necessarily mean the safest route anymore. This situation is clearly shown in
the simulated scenario 2. Their familiarity of the environment does not provide them
the ability to either identify the status or locate the coordinate of the obstacle.

8 Conclusions

SEEP 1.5 has been used successfully to model human cognitive behaviors for estimat-
ing the pre-evacuation time. The simulation results show that pre-evacuation phase
consumed 60.4% of TET. By conducting sensitivity analysis, TET can be reduced by
41% by eliminating the recognition time in pre-evacuation phase.

As the natural and the most common wayfinding method, familiarity wayfinding
method was able to determine the shortest evacuation route where the obstacle exis-
tence was denied. However, when an obstacle appeared in the building, the routine
route cannot be relied on any longer. In fact, people need guidance in panic situation
and safety must be the primary objective in an evacuation process.

Modified ACO embedded on agent emergency exit sign was able to determine the
evacuation route by recognizing the obstacle status in the building. The simulation re-
sults of a hostel evacuation show that when an obstacle appears, the ACO wayfinding
method performs 21.6% faster than the familiarity wayfinding method. The comparison
between the two methods shows that a local based decision does not assure the occupant
to take the feasible route during an emergency evacuation. Considering safety, the term
“feasible route” is more appropriate to be used rather than the term “shortest route”
because the shortest route might not always mean the safest feasible route.

In order to expand the scope of this simulator, other more challenging scenarios
can be applied to include more extreme building environment such as a nuclear power
plant, a crowded sports stadium or skyscrapers. The prediction of important evacua-
tion factors for such buildings can be used for better evacuation planning and helps
protect more lives.

368 A. Rahman, A.K. Mahmood, and E. Schneider

References

1. Lo, S., Fang, Z., Zhi, G., Yuen, K.: A computer simulation model of emergency egress for
space planners. Journal of Facilities (Emerald) 20, 266–270 (2002)

2. Johnson, C.: Lessons from the evacuation of the WTC, September 11th 2001 for the de-
velopment of computer-based simulations. Cognition, Technology & Work Journal 7,
214–240 (2005)

3. Gwynne, S., Galea, E.R., Owen, M., Lawrence, P.J., Filippidis, L.: A review of the meth-
odologies used in computer simulation of evacuation from the built environment. Journal
of Building and Environment 34, 741–749 (1999)

4. Pan, X., Han, C.S., Dauber, K., Law, K.H.: Human and social behavior in computational
modeling and analysis of egress. Journal of automation in construction 15, 448–461 (2006)

5. Purser, D., Bensilum, M.: Quantification of behaviour for engineering design standards
and escape time calculations 38, 157–182 (2001)

6. Pires, T.: An approach for modeling human cognitive behavior in evacuation models. Fire
safety journal 40, 177–189 (2005)

7. Proulx, G.: Evacuation time and movement in apartment buildings. Fire Safety Journal 24,
229–246 (1995)

8. Lo, S.M., Huang, H.C., Wang, P., Yuen, K.K.: A game theory based exit selection model
for evacuation. Fire Safety Journal 41, 364–369 (2006)

9. Pelechano, N., Badler, N.I.: Modelling crowd and trained leader behavior during building
evacuation, pp. 80–85. IEEE Computer Society, Los Alamitos (2006)

10. Murakami, Y., Minami, K., Kawasoe, T., Ishida, T.: Multi-agent simulation for crisis man-
agement. In: Proceeding of the IEEE workshop on knowledge media networking. IEEE,
Los Alamitos (2002)

11. Olsson, P., Regan, M.: A comparison between actual and predicted evacuation times 38,
138–145 (2001)

12. Sugimoto, Y.: Modeling action rules through participatory simulation in virtual space.
Master Thesis, Kyoto University, Japan (2005)

13. Chow, W.: "Waiting time" for evacuation in crowded areas. Journal of Building and Man-
agement Journal 42, 3757–3761 (2007)

14. Thomson, P.A., Marchant, E.W.: A computer model for the evacuation of large building
populations. Fire Safety Journal 24, 131–148 (1995)

15. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic 407,
487–490 (2000)

16. Proulx, G.: Evacuation time and movement in apartment buildings. Fire Safety Journal 24,
229–246 (1995)

17. Padgham, L., Winikoff, M.: Developing intelligent agent systems, a practical guide. In:
West Sussex. John Wiley & Sons Ltd., Chichester (2004)

18. Tran, Q., Low, G.: Comparison of ten agent-oriented methodologies. In: Henderson, B.,
Giorgini, P. (eds.) Agent-Oriented Methodologies. Idea group publishing, Hershey (2005)

19. Al-Hashel, E., Balachandran, B., Sharma, D.: A comparison of three agent-oriented soft-
ware development methodologies: ROADMAP, Prometheus, and MaSE. In: Apolloni, B.,
Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS (LNAI), vol. 4694, pp. 909–916.
Springer, Heidelberg (2007)

20. RMIT Intelligent Agents Group, http://www.cs.rmit.edu.au/agents/pdt/
21. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperat-

ing agents. IEEE Transactions on Systems, Man, and Cybernetics 26(1) (1996)

 Using Agent-Based Simulation of Human Behavior to Reduce Evacuation Time 369

22. Rahman, A., Kamil, A.: Feasible route determination using ant colony algorithm in
evacuation planning. In: ScoRed 2007. IEEE, Malaysia (2007)

23. Kisko, T.: EVACNET4 - A program to determine the minimum building evacuation time.
University of Florida (1999), http://www.ise.ufl.edu/kisko/files/
evacnet/

24. Proulx, G.: Evacuation time and movement in apartment buildings. Fire Safety Journal 24,
229–246 (1995)

25. Gwynne, S., Galea, E., Owen, M., Lawrence, P.J., Filippidis, L.: A systematic comparison
of buildingEXODUS predictions with experimental data from the Stapelfeldt trials and the
Milburn House evacuation. Applied mathematical modelling 29, 818–851 (2005)

Participatory Simulation Platform
Using Network Games

Shoichi Sawada1, Hiromitsu Hattori1, Marika Odagaki2, Kengo Nakajima2,
and Toru Ishida1

1 Graduate School of Informatics, Kyoto University,
Yoshida-Honmachi Sakyo-ku Kyoto 606-8501 Japan

shoichi@ai.soc.i.kyoto-u.ac.jp
2 Community Engine Inc., 4-31-8 Yoyogi Shibuya-ku Tokyo 151-0053 Japan

Abstract. In this paper, we develop a novel participatory simulation
platform, called gumonji/Q, by integrating scenario description language
Q and network game gumonji. In a participatory simulation, humans and
software-agents coexist in a shared virtual space and jointly perform sim-
ulations. To observe practical behaviors of humans, a participatory simu-
lation platform must be able to provide reasonable simulated experience
for humans to let them behave as they do in the real-world. gumonji/Q
makes it possible to design diverse interaction protocols based on Q’s sce-
nario description ability. Under the “game-quality” graphics provided by
gumonji, humans and agents can interact with their surrounding environ-
ment, which means they can affect the environment and receive feedback
from the environment. Since gumonji/Q inherits gumonji’s features as a
network game, users are more enticed to participate in simulations since
simulations on gumonji/Q seems more enjoyable than normal simula-
tions. We show an example of how to obtain human behavior models
through a simulation on gumonji/Q.

Keywords: Multiagent Simulation, Participatory Modeling, Participa-
tory Simulation, Gaming, Networked Simulator.

1 Introduction

Social simulations are becoming popular for designing socially embedded sys-
tems. Multiagent-based simulation (MAS), which can reproduce complex sys-
tems (e.g. human society) based on a bottom-up approach, is considered as one
of the promising way for conducting social simulation [1,2]. In order to achieve
MAS, computation models for reproducing human’s behaviors are required. We
have focused on participatory modeling as an influential methodology for ob-
taining practical human behavior models [3]. Although there are several ways
for conducting participatory modeling [4,5], we are trying to develop a modeling
methodology using participatory multiagent-based simulation (PMAS). This is
because PMAS is suitable to provide better real-world experience and make it
possible to achieve massively simulations with a number of users [6].

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 370–380, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Participatory Simulation Platform Using Network Games 371

In PMAS, humans and software-agents jointly perform simulations, so that
there are technical issues for developing a PMAS platform which can provide rea-
sonable simulated experience. During simulations, humans interact with agents
and the surrounding environment. In order to let humans behave practically,
they are able to interact with agents based on social interaction protocols. Hu-
mans also are able to affect the surrounding environment and receive feedback.
Especially, it is important that humans can visually recognize the current state
to let them make a decision in a natural way.

Following the above discussion, we intend to develop a PMAS platform for
obtaining practical human behavior models. We develop a novel networked par-
ticipatory simulation platform, called gumonji/Q, by integrating scenario de-
scription language Q and network game gumonji1. Q is a scenario description
language that enables us to describe complex social interactions between agents
and their surrounding world (humans, other agents, simulation environment,
etc.) [7]. gumonji is a network game which offers playing fields for virtual life.
Users can take a large variety of activities via characters on that field as though
they are in the real-world. They also can change their surrounding environ-
ment and visually recognize any changes through game-quality graphics. gu-
monji/Q, thus, is able to realize a participatory simulation environment where
“human-agent” and “human(agent)-environment” relationships could be reason-
ably achieved to reproduce and understand a large variety of social phenomena.

The remainder of the paper is organized as follows. First, we show the back-
ground of our research; related works and two primary software (Q and gumonji).
Second, we present new participatory simulation platform gumonji/Q. Then, we
show an example of participatory modeling on gumonji/Q. Finally, concluding
remarks are given in the final section.

2 Background

2.1 Related Works

FreeWalk is a platform for constructing virtual collaborative events in which
agents and humans can socially interact with each other in a virtual space [8].
An agent is controlled through the platform’s API. A human participant enters
the virtual space as an avatar, which he/she controls through the UI devices con-
nected to the platform. The primary objectives of FreeWalk is to realize a virtual
space for communication and collaboration between humans and agents. How-
ever, while humans and agents can take diverse social interaction on FreeWalk,
it does not simulate the environment in detail, which means humans cannot af-
fect their surrounding environment and receive feedback. For providing better
real-world experience, we need an interactive simulation environment.

CORMAS can be used to build simulation models of coordination modes be-
tween individuals and groups who jointly exploit the resources [9]. In CORMAS,
users can define the diffusion of environmental changes, and agent’s behaviors
1 http://www.gumonji.net/

372 S. Sawada et al.

followed by the surrounding environment. The computational model behind
CORMAS simulations is a cellular automaton. A natural environment is mod-
eled as a two dimensional mesh, and the diffusion between neighboring cells is
calculated at each unit time. CORMAS is useful to describe interactions be-
tween natural environment and humans. However, while FreeWalk emphasizes
graphics functions, CORMAS just shows abstract graphics, so that it does not
provide enough visual information and it is hard for humans to behave like in
the real-world on the environment described as two dimensional mesh.

2.2 Scenario Description Language Q

Q is a scenario description language for multiagent systems that allows us to de-
fine how agents are expected to interact with its environment involving humans
and other agents [7]. Q is suitable for describing complex social interactions
[10,11]. Q scenarios foster the emergence of dialogs between agent designers
(computing professionals) and application designers (scenario writers) [12]. The
computational model behind a Q scenario is an extended finite state automa-
ton, which is commonly used for describing communication protocols. By using
Q, users can directly create scenario descriptions from extended finite state au-
tomata. Q’s language functionality is summarized as follows:

– Cues and Actions
An event that triggers interaction is called a cue. Cues are used to request
agents to observe their environment. Cues keep on waiting for the event
specified until the observation is completed successfully. Comparable to cues,
actions are used to request agents to change their environment.

– Scenarios
Guarded commands are introduced for the situation wherein we need to
observe multiple cues simultaneously. A guarded command combines cues
and actions. After one of the cues becomes true, the corresponding action
is performed. A scenario is used for describing protocols in the form of an
extended finite state machine, where each state is defined as a guarded com-
mand. Scenarios can be called from other scenarios.

– Agents and Avatars
Agents, avatars and a crowd of agents can be defined. An agent is defined
by a scenario that specifies what the agent is to do. Even if a crowd of
agents executes the same scenario, the agents exhibit different actions as they
interact with their local environment (including other agents and humans).
Avatars controlled by humans do not require any scenario. However, avatars
can have scenarios if it is necessary to constrain their behavior.

2.3 Network Game gumonji

gumonji is a network game with the function of environmental simulation that
is developed and released by Community Engine Inc. Figure 1 shows a snapshot
of the virtual space of gumonji. In gumonji, animals and plants exist in a virtual

Participatory Simulation Platform Using Network Games 373

Fig. 1. A Screenshot of gumonji

space, and the atmosphere and water circulate according to physical law. Users
participate in the simulation environment by operating characters (avatar2) in
the virtual space, and can manipulate living things through actions of characters.
The influence given to the living thing spreads widely time passes, and the
environment change is displayed in 3D virtual space. Many users can participate
in the same environment, and communicate with other users through actions
and chats of avatars.

In gumonji, all users have own simulation environment on individual comput-
ers and participate in other users’ simulation environment through P2P network.
By using P2P network, users can move freely across multiple simulation envi-
ronments and participate anytime and anywhere.

Since gumonji is a network game where many users participate and commu-
nicate with other users, actors on the environment are all characters operated
by users. Therefore, gumonji does not have the function to construct and run
autonomous agents. For the purpose of participatory simulation, it is necessary
to add the function to describe diverse interaction pattern for agents.

3 Networked Simulator gumonji/Q

For achieving participatory simulation, we think two types of interaction should
be available, i.e. interaction between entities (humans, agents, etc.) and inter-
action between an entity and environment. As we mentioned in the previous
2 In this paper, we call a human-controlled character “avatar” in order to distinguish

human-controlled character(agent) and Q-controlled agent.

374 S. Sawada et al.

Scenario

Load

Q Interpreter

Scenario
InterpreterQ Connector

Execution Request
for Cue & Action

Result of
Execution

gumonji Client

Input to
Control Avatar

Display simulation
Environment

User

User
Interface

Scenario
Translator UserAPI

gumonji Zone Server

SimulatorAgent

Operaton
Sequence

Result of
Operation

Operaton
Sequence

Result of
Operation

Execution Request
for Cue & Action

Result of
Execution

Call

Data, Message

Execution
Request

Result of
Request

Connector

Fig. 2. An Architecture of gumonji/Q

section, for the design of interaction between entities, a scenario description lan-
guage Q is useful, and we can obtain interactive simulation environment by using
gumonji. In this section, we show how to connect these two software to construct
a simulation platform gumonji/Q.

3.1 An Architecture of gumonji/Q

Figure 2 shows an architecture of gumonji/Q. Colored boxes are newly im-
plemented sub-components to realize gumonji/Q. As shown in this figure, gu-
monji/Q consists of gumonji’s primary components, gumonji Zone Server and
gumonji Client, and Q interpreter. Zone Server has an environment simulator
(just written as “simulator” in the figure) as its sub-component which simulates
the natural environment and maintains all objects, such as human-controlled
avatars, plants, animals, on the environment. A user can access the Zone Server
from a gumonji Client on each computer, and control an avatar on the envi-
ronment. To put it concretely, user’s input data is converted to a sequence of
operators to control an avatar based on gumonji’s User API. Q interpreter, which
transforms a gumonji character into an autonomous agent, is connected to the
Zone Server. In order to achieve a connection between gumonji’s Zone Server
and Q interpreter, we implemented sub-components, ”Agent Connecter” and
”Q Connecter”, within the Zone Server and Q interpreter, respectively. These
components communicate via TCP/IP so that gumonji’s Zone Server and Q

Participatory Simulation Platform Using Network Games 375

interpreter can be connected each other. A Q-controlled gumonji’s character
can act as an autonomous agent. Note that a crucial point is that the envi-
ronment simulator in Zone Sever can deal with human- controlled avatars and
Q-controlled agents in a unified way.

As shown in Figure 2, when Q scenario, which describes an interaction pat-
tern, is input, the scenario is converted to an execution request for Cue and
Action by the scenario interpreter. The request is sent to Agent Connecter on
the Zone Server from Q Connecter via TCP/IP. Of course, gumonji cannot inter-
pret the request from the Q interpreter. Thus, we implemented a sub-component,
Scenario Translator, which translates an execution request for Cue and Action
to an operator sequence. As shown in Figure 2, the input from User API and
Scenario Translator is identical. Therefore, an environment simulator can deal
with human-controlled avatars and Q-controlled agents in a unified way. The
Scenario Translator first translates the execution result to the format which is
available to the Q interpreter. Then, the result is sent to Q-interpreter via Agent
Connecter. As stated above, a participatory simulation among human-controlled
avatars and Q-controlled (autonomous) agents can be achieved on gumonji/Q.

3.2 Functions of gumonji/Q

gumonji enables us to simulate the natural environment, and because of its game-
quality graphics, it can provide enough visual information for users. However,
on gumonji, users cannot define diverse interactive behaviors for any gumonji
objects. Therefore, we need additional functions to conduct participatory simu-
lations. gumonji/Q makes it possible to control any objects through Q scenario
so that we can construct context-sensitive agents for the simulations.

gumonji/Q achieves the participatory simulation environment because of its
features as a network game. Users can join in simulations from their own com-
puter environment via the Internet and they can just enjoy playing games. There-
fore, it is useful for us to assemble a large number of users for simulations; this
in turn allows us to obtain diverse behavior models. As we mentioned in section
2.3, on gumonji, we can connect multiple simulation environments via P2P con-
nection. Thus, it is possible to realize a large-scale online simulation environment
using gumonji/Q.

4 An Example of Participatory Modeling Using
gumonji/Q

In this section, we conduct a participatory modeling using gumonji/Q to demon-
strate its practicality for participatory modeling.

4.1 Participatory Modeling Process

We conduct a modeling according to a participatory modeling process proposed
in [5]. The process consists mainly of three steps; gaming simulation, interaction
design, and multiagent simulation. The detail of each step is as follows:

376 S. Sawada et al.

1. Gaming Simulation
This step is for extracting information for constructing behavior models at
the next step. In this step, we conduct a gaming simulation which reproduce
a social system of a certain application domain. The process of the gaming
is maintained as log data which is used next in the interaction design step.

2. Interaction Design
This step is for constructing an initial behavior model based on the log data
in the first step. A behavior model is represented as a set of interaction
pattern for the current state. In this step, we interview the users in order
to extract the information about their decision making. Using the result of
interview result and log data, we construct an initial behavior model.

3. Multiagent Simulation
This step is for verifying and improving the constructed model. We imple-
ment the model based on Q. Through multiagent simulations with imple-
mented models, we try to verify the performance of the models and compare
with the result of the gaming. If unreasonable behavior or interaction are
observed during the simulations, we try to modify the models, then conduct
the simulation again with the modified models.

4.2 An Overview of the Modeling Experiment

We conducted a participatory modeling using gumonji/Q for dealing with the
farmland accumulation in an agricultural colony.

The Setting of Simulation Environment. We used a virtual agricultural
colony in a farmland represented by 4x4 mesh (Figure 3). Figure 3(a) shows an
initial condition of a simulation. Each block is a unit of the farmland and is
assigned to a farmer. For example, a block on the top left is assigned to a farmer
A. For this experiment, we defined three types of farmers as shown below:

– Authorized farmer: This type of farmer actively accumulates farmland as
much as possible for the efficiency of his/her work. In Figure 3(a), A and B
represent this type of farmers.

– Generic farmer: This type of farmer tries to keep the current state. In the
figure, C represents this type.

– Subsistence farmer: This type of farmer tends to abandon or lend his/her
farmlands when the agricultural work becomes hard. In the figure, D and E
represent this type.

4.3 The Process of Modeling Experiment

We explain the modeling process on gumonji/Q step by step, and show the
result. In this experiment, five users participated in the participatory modeling.
Each of users performed according to the assigned type of farmers.

Participatory Simulation Platform Using Network Games 377

A

D

B

D

A

A

B

B

C

A

B

C

A

E

C

E
(a) (b)

(c) (d)

A

A

B

B

A

A

B

B

C

A

B

C

A

A

C

Fig. 3. Transition of the Ownership

Gaming. We first try to observe users’ behaviors through the gaming in the
virtual farmland. The time period of the gaming was set to 10 years. During the
gaming, participants made a decision about how to manage their own farmlands,
negotiate with others on the deal in farmlands, or just cultivate. During the
negotiation, a borrower presents his/her desired tenancy rate, then an owner
responds whether the rate is acceptable or not. If the negotiation is successfully
completed, the borrower pays the fixed tenancy rate every year. The income is
calculated based on the amount of harvest and rental fee. The expense is the
summation of working cost, machine maintenance cost, and tenancy cost. We
assume that authorized farmers own farm machines, so that their working cost
are reduced by using machines, but they must pay machine maintenance cost.
Each user select behavior to maximize utility.

The transition of the owner of farmlands is shown in Figure 3. During the
gaming, we could observe several interaction between users, such as mentioned
below. A subsistence farmer D had continued to cultivate until the middle of the
period, but after that, he stopped cultivating because it became difficult for him
to maintain his farmland. Thus, an authorized farmer A offered D to barrow the
abandoned farmland. Although A also offered C to barrow his farmland, C refused

378 S. Sawada et al.

Fig. 4. A Behavior Model of a Generic Farmer

the offer. As a result, the owner of farmlands became as shown in Figure 3(d).
In the end of the gaming, a farmer E abandoned his/her farmland (bottom right
block in the figure).

Interaction Design. We extracted the interaction pattern from the observation
obtained in the gaming. For the extraction of interaction pattern, we interviewed
the users and asked them how they made a decision in each state. With the ob-
tained interaction patterns, we constructed behavior models of each user. As we
mentioned above, a behavior model is constructed as a set of interaction patterns.

Figure 4 shows an obtained model for a generic farmer. In this model, a farmer
abandons some parts of his/her farmlands when it becomes difficult for him/her
to continue to cultivate, and he/she abandons all his/her farmlands when it is
impossible to maintain farmlands due to any reasons, such as aging, and so on.
Additionally, this model shows that a farmer accepts an offer to borrow the
abandoned farmland.

Multiagent Simulation. The obtained behavior models were assigned to the
agents and multiagent simulations were executed. We observed simulations, then
compared the result of the gaming and simulations. Based on the comparison,
we modified behavior models when necessary. For example, in the simulations, a
generic farmer always refused offers to borrow his farmland even when he was in
the, “difficult to cultivate” state. This was because there was no edge to accept
an offer to borrow “not abandoned” farmland with any tenancy rate. Figure 5.
In this model, there are two edges to accept an offer with the expensive rate and
refuse an offer with the cheap rate.

Participatory Simulation Platform Using Network Games 379

Fig. 5. An Improved Behavior Model of a Generic Farmer

We obtained models from the observation of users’ behaviors by participatory
simulation on gumonji/Q. We consider that this result verifies the practicality
of gumonji/Q for participatory modeling.

5 Conclusion

In this paper, we developed a novel networked participatory simulation platform,
gumonji/Q, by integrating scenario description language Q and network game
gumonji. In gumonji/Q, an user can design interaction pattern between entities
using Q. An user also perform simulation on virtual space provided by gumonji
where he/she can interact with the environment and make a decision based on
game-quality graphics. In order to connect Q and gumonji, we implemented
communication sub-components for achieving TCP/IP communication between
them, and a scenario translator to convert a request from Q to a sequence of
operators. Then, we showed an example of how to obtain human behavior models
through a simulation on gumonji/Q.

We developed a PMAS platform in which many humans can participate and
interact with agents and the surrounding environment practically. By using gu-
monji/Q as a simulation platform, we can expect that users are more enticed
to participate in simulations on gumonji/Q since simulations on gumonji/Q
seems more enjoyable than a directive simulations. Additionally, because of gu-
monji/Q’s features as a networked simulator, they can access to the simulation
from their own computer environment via Internet.

Our future works include developing a participatory modeling methodology
which is suitable for distributed participatory simulation environment.

380 S. Sawada et al.

References

1. Axelrod, R.: Advancing the art of simulation in the social sciences. Complex 3,
16–22 (1997)

2. Drogoul, A., Ferber, J.: Multi-agent simulation as a tool for modeling societies:
Application to social differentiation in ant colonies. In: Castelfranchi, C., Werner,
E. (eds.) MAAMAW 1992. LNCS, vol. 830, pp. 3–23. Springer, Heidelberg (1994)

3. Murakami, Y., Sugimoto, Y., Ishida, T.: Modeling human behavior for virtual
training systems. In: Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI 2005), pp. 127–132 (2005)

4. Gilbert, N., Maltby, S., Asakawa, T.: Participatory simulations for developing sce-
narios in environmental resource management. In: Third workshop on agent-based
simulation, pp. 67–72 (2002)

5. Torii, D., Ishida, T., Bousquet, F.: Modeling agents and interactions in agricul-
tural economics. In: Proceedings of the 5th International Joint Conference on Au-
tonomous A0gents and Multiagent Systems (AAMAS 2006), pp. 81–88 (2006)

6. Colella, V., Borovoy, R., Resnick, M.: Participatory simulations: using computa-
tional objects to learn about dynamic systems. In: CHI 1998: CHI 1998 conference
summary on Human factors in computing systems, pp. 9–10 (1998)

7. Ishida, T.: Q: A scenario description language for interactive agents. Computer 35,
42–47 (2002)

8. Nakanishi, H., Ishida, T.: Freewalk/q: social interaction platform in virtual space.
In: VRST 2004: Proceedings of the ACM symposium on Virtual reality software
and technology, pp. 97–104 (2004)

9. Bousquet, F., Bakam, I., Proton, H., Page, C.L.: Cormas: Common-pool resources
and multi-agent systems. In: IEA/AIE 1998: Proceedings of the 11th International
Conference on Industrial and Engineering Applications of Artificial In telligence
and Expert Systems, pp. 826–837 (1998)

10. Murakami, Y., Ishida, T., Kawasoe, T., Hishiyama, R.: Scenario description for
multi-agent simulation. In: AAMAS 2003: Proceedings of the second international
joint conference on Autonomous agents and multiagent systems, pp. 369–376 (2003)

11. Nakanishi, H., Nakazawa, S., Ishida, T., Takanashi, K., Isbister, K.: Can software
agents influence human relations?: balance theory in agent-mediated communi-
ties. In: AAMAS 2003: Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, pp. 717–724 (2003)

12. Ishida, T.: Society-Centered Design for Socially Embedded Multiagent Systems.
In: Klusch, M., Ossowski, S., Kashyap, V., Unland, R. (eds.) CIA 2004. LNCS,
vol. 3191, pp. 16–29. Springer, Heidelberg (2004)

A Multiagent-System Framework for
Hierarchical Control and Monitoring of Complex

Process Control Systems

Vu Van Tan�, Dae-Seung Yoo, and Myeong-Jae Yi

School of Computer Engineering and Information Technology
University of Ulsan, San-29, Moogu-2 Dong, Namgu, Ulsan, 680-749, Korea

{vvtan,ooseyds,ymj}@mail.ulsan.ac.kr

Abstract. This paper proposes a framework for the implementation of
multiagent system for hierarchical control of complex process control
systems based on OPC1 technology that is widely applied to the au-
tomation control systems. This framework is proposed with utilization
of OPC technology in both continuous-event part and discrete-event part
by incorporating with XML for the negotiation and cooperation in the
environments of multiagent system. The framework design criteria are
also described. The comparison of the proposed framework with exist-
ing frameworks is made to demonstrate that the proposal is reliable and
feasible in order to apply to agent-based process control applications.

Keywords: Hierarchical control, multiagent, OPC, process control,
XML.

1 Introduction

Automation and information systems designed for industrial plant floor are more
complex and large, including a lot of different components and different platforms
such as control instrumentations, control softwares, etc. However, the agent tech-
nology could be help for them as mentioned in several researches [2,9,4]. A com-
plex process control system should place on different hardware and software and
accomplishes its tasks. The problem deals with the appropriate synthesis of flexi-
ble mechanism for accessing and updating the process data, events, operator and
external expert decisions, and negotiations. Control tasks for complex process
control systems are still challenging because of the complexity of related decision
tasks and information systems. It seems that they are hard to integrate more
advanced control strategies into real-world situations because of the widely used
software systems in enterprises and integration of process control systems.

Although a number of existing approaches for the agent-based complex process
control systems have been successfully proposed and developed in recent years

� Corresponding author.
1 Openness, Productivity, and Collaboration; formerly “OLE for Process Control”.

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 381–388, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

382 V.V. Tan, D.-S. Yoo, and M.-J. Yi

[2,9,4,17,16,12,8,11,3,6,5,10,1], it seems that they are still far away from a ulti-
mate solution. These approaches also have limited in attention to the monitoring
operations [14]. Research on applications of multiagent system in process control
and monitoring has been less extensive than in discrete manufacturing. The rea-
son is that both the suitability and usefulness of multiagent system in process
control are maybe not evident than in discrete manufacturing. Nowadays, the
OPC Foundation has defined a new specification as the next generation for
process control and monitoring running on various platforms, i.e., a series of the
OPC Unified Architecture (UA) specifications [15]. It provides a paradigm for
the design and implementation of control softwares.

The aim in this paper is to propose a framework for the implementation of
multiagent system for hierarchical control and monitoring of complex process
control systems based on OPC UA technology. The framework-based system
allows to access and update the process data, events, operator and external
expert decisions. This framework is designed with self-organizing database to
provide a flexible method when applying to various applications.

This paper is organized as follows. The next section introduces the framework
design criteria. Section 3 proposes an OPC-based framework architecture of mul-
tiagent system for hierarchical control and monitoring. To provide the ability of
storing data, events, and parameters, the design of database structure is repre-
sented in Section 4. The comparison of the proposed framework with existing
frameworks is provided to demonstrate that the proposed framework is reliable
and feasible to apply to various real applications as presented in Section 5. In
short, Section 6 will mark some conclusions and future work.

2 Framework Design Criteria

An object-oriented framework was defined as a prefabricated extensible set of
classes or components with predefined collaboration between them and extension
interfaces [5]. A software framework for multiagent system has to meet the re-
quirements that rise from the agent point of view. A two-step requirement analy-
sis to construct the framework criteria should be performed including domain
analysis and domain design [10]. The framework design criteria are therefore
specified as follows:

1. Generic requirements. The aim of the proposed framework is the process
control system domain. A universal architecture is therefore necessary with
treating different organizational types of process control systems.

2. Methodology. The concept of the proposed framework introduces a level of
abstraction that provides an easier conceptualization of the problem domain.
This enables the implementation of more complex control strategies.

3. Flexibility. The flexibility of the proposed framework is incorporated in the
context of hierarchical control and monitoring of process control systems.

4. Scalability. It is relatively easy to add new agents to a multiagent system
and to change parameters for controlling the states of control devices.

A Multiagent-System Framework for Hierarchical Control and Monitoring 383

Fig. 1. The proposed architecture of multiagent system and its agent levels

5. Reusability. This framework is ensured by developing a generic structure,
level of agents, and database structure for storing the control parameters,
process data, events, operator and external expert decisions.

6. Openness. The proposed framework is developed according to OPC technol-
ogy to makes it flexible and open for agent-based complex process control
systems to develop various agent applications. It should comply with the
specification of FIPA standards2 for agent technology as close as possible.

7. Adaptivity. Agents may have adaptive behaviour, i.e. the ability of learn-
ing from experience about the environments to improve the choice of future
actions. The control parameters are stored in additional tables and automat-
ically restored by the proposed framework when client starts.

3 Design of Multiagent-Based Process Control System

3.1 System Architecture

The type of an agent depends on the way of the state changes and on the knowl-
edge of the agent. The agents are specified on a design level in an iterative
process in addition of knowledge. The structure of agents of the hierarchial con-
trol system can be shown in Fig. 1. It consists of the three kinds of the agents
such as control agent, supervisory agent, and expert agent [2].
2 http://www.fipa.org/

384 V.V. Tan, D.-S. Yoo, and M.-J. Yi

The agents in the multiagent systems not only communicate with the users
and objects, but also communicate and incorporate with others. To solve these
problems, the direct control interaction can be used with cooperation of control
system functions. In addition, the distributed control systems (DCS) is normally
divided into two types of behaviors such as time-driven and event-driven, respec-
tively. Each agent might initiate a state transition, but not every agent might
actually enforce this agent without cooperation with other agents.

The most important issue for multiagent systems is to cooperate the agents
and to communicate an agent with others. In the cooperation model provided
by the different levels of abstraction, the mappings of real objects of the con-
trolled objects can be presented in Address Space based on OPC technique as a
hierarchical structure. Moreover, the supervisory agent is equipped with models,
methods, and algorithms to additional indirect controls.

The architecture of a multiagent system based on OPC technology with meth-
ods, knowledge of expert agent, and needful components is proposed as shown in
Fig. 1. It indicates how the hierarchical control levels are presented and provides
detail information on guarantees of two types of the behaviors in DCS.

3.2 Control and Monitoring Operations

The multiagent-based process automation system, i.e., process control and mon-
itoring system, consists of two types of agents: 1) process agents and 2) moni-
toring agents. The process agents perform supervisory control operations either
in sequential or iterative fashion. This relates to process state change or batch
control operations and the later to tuning of continuous control. The task of the
agent is first to plan a shared sequence of control actions and then to execute this
sequence. It is to calculate optimal values for the supervisory control variables.
Therefore, the decision-making processes of the agents are different depending
on the role of the iterative refinement of the supervisory control variables. The
results from the decision-making tasks are new values of control variables.

The monitoring agents perform monitoring operations in a distributed man-
ner. Their operation has foundation by combining information from field-device
measurements, operational state classification, simulations, condition monitor-
ing, and process models. The operations of the monitoring agents are based on
distributed search, processing, and monitoring of information. The search of in-
formation is decomposed using the understanding of physical structure of the
monitored process, its present state, various diagnostics reports, and ability of
different information providers.

3.3 Agent Model for the Control and Monitoring Operations

The agent model of an automation agent3 specifies the internal modules of an
agent and its operations. The automation agents also need to be conformed to
the agent model of some FIPA-compliant generic agent platform. In general, an
agent mainly consists of a set of behavior and action to define the agent reaction
3 It is used to either indicate a process agent or a monitoring agent.

A Multiagent-System Framework for Hierarchical Control and Monitoring 385

Fig. 2. The UML class diagram for the process automation agent

to different circumstances like incoming messages or events. Agent behaviors,
which form the basis for reactivity and pro-activity [10], are used to implement
agent interactions. A process automation agent will use its actions to fulfill its
goals. The automation agent is composed of modules that can be classified into
operational and modeling modules and runtime data structures. The agent model
used for the proposed framework is illustrated in Fig. 2.

The process model describes the knowledge of a process automation agent
on the controlled process. A process automation can have knowledge about the
existence of process variables, measured values, and relation between variables.
A control variable may be controlled by one agent whereas the measurements can
be shared among several agents. The plan library contains plans that a process
automation agent can use during planning in order for creating runtime plans.

4 Database Structure

Because agents require accessing to database to be able to participate in an ar-
chitecture where information is exchanged, the connection between the proposed
framework and relational database standards must be guaranteed. The informa-
tion generated by the OPC server-client model is stored in the additional tables
created by the specific database. The additional tables and their relationships
are designed as shown in Fig. 3 to store the data, events and other information.
Other tables can be added to this database structure. It ensures that various
real applications can be satisfied adequately.

When the administrator is to terminate a choice of the interesting items,
i.e., objects, for reading and writing and then control algorithm is also defined
for operating on items that are established in the OPC server for reading or
calculating values. Items selected by the expert agent constitute the expert con-
figuration and should be saved in the database. The saved configuration will be
automatically restored when the browser-based client starts. While the expert
agent processes the defined configuration, it can set to the read/write mode in

386 V.V. Tan, D.-S. Yoo, and M.-J. Yi

Fig. 3. The tables and relationships among the additional tables in the relational data-
base for the proposed framework

the application. The appropriate mechanisms in order to the execution of the
proposed system with control algorithms are included the following steps:

1. Downloading the current values from the additional tables designed in the
database and then storing these values to the control variables.

2. Executing the control algorithms to calculate the new values that will be
stored in the database, i.e., data or events and parameters are updated to
the additional tables automatically.

3. Writing the changed values from the additional tables into the control objects
represented at the Address Space configured by the administrators.

4. Sending the calculated values created by the control algorithms to the OPC
server-client model. These values depend on the specific control algorithms.

5 Comparison with Existing Frameworks

To compare the proposed framework with other approaches, it is difficult to
conduct a fair comparison of different proposals and architectures because of
their conceptual nature and wide range of production environments. A qualita-
tive comparison of the proposed architecture and existing frameworks could be
made. The structural characteristics of the proposed system are therefore used
to compare with others. The proposed framework is designed for various process
control system while some existing approaches focus only on the development of
specific applications [2,4,11,6]. It has a number of advantages as follows:

1. The control address space can collect current data and events that are truly
related to each others by using new features of the OPC UA specification.
The concept of the proposed framework introduces a new level of the design
and implementation in order to provide an easier conceptualization of the
control agent domain. It enables the implementation of more complex control
strategies where the control is distributed. It is also suitable for developing
control strategies where large amounts of distributed data are collected.

A Multiagent-System Framework for Hierarchical Control and Monitoring 387

2. The proposed framework is mainly for process planning, scheduling and con-
trol with integrating the hierarchical and decentralized controls which make
the proposed system flexible. But existing approaches are entire manufac-
turing systems that include product development, product planning, process
planning generation, and scheduling and control, e.g., PROSA [1].

3. Data or events are automatically stored to the relational database. The data-
base structure is open for the application developers.

4. Unlike several existing approaches that focus on the domain of manufactur-
ing systems such as mentioned in [7,8,6,10,1], the domain of this framework
is that the hierarchical control and monitoring of complex process control
systems is covered including the guarantees of updating the process data,
events, operator and external expert decisions, and negotiation.

5. The structure of the proposed framework is designed and developed in a
systematic way. This framework has focused not only on the control func-
tions, but also on other functions like monitoring operations. The modules
implemented within the framework are used for the purpose of developing
the agent-based process control systems and new roles for agents.

6 Concluding Remarks and Future Work

This paper has introduced a framework for the implementation of multiagent
system for hierarchical control and monitoring of the complex process control
domain. Based on the requirements of the process control domain, the frame-
work design criteria were proposed. A generic architecture was suggested for the
implementation of the multiagent-based process control system that allows for
a flexible integration of different control strategies. Details about architecture,
agent model, and database structure are presented. As a result, the proposed
framework fulfills the seven framework design criteria. It was proposed for pro-
viding a design foundation and a common framework to realize its potential to
the application developers when implementing various agent applications.

In future research, trying to use the proposed framework for the implemen-
tation of an agent-based process control approach for flexible process control
systems is the major task.

Acknowledgments. The authors would like to thank Korean Ministry of
Knowledge Economy, Ulsan Metropolitan City, University of Ulsan, and the
Network-basedAutomationResearchCenter (NARC) which partly supported this
research. The authors also thank the anonymous reviewers for their carefully read-
ing and commenting this paper.

References

1. Brussel, H.V., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference Ar-
chitecture for Holonic Manufacturing Systems: PROSA. Computers in Industry 37,
255–274 (1998)

388 V.V. Tan, D.-S. Yoo, and M.-J. Yi

2. Choinski, D., Nocon, W., Metzger, M.: Multi-Agent System for Hierarchical Con-
trol with Self-organising Database. In: Nguyen, N.T., Grzech, A., Howlett, R.J.,
Jain, L.C. (eds.) KES-AMSTA 2007. LNCS, vol. 4496, pp. 655–664. Springer, Hei-
delberg (2007)

3. Damba, A., Watanabe, S.: Hierarchical Control in a Multiagent System. In: Pro-
ceedings of the 2nd International Conference on Innovative Computing, Informa-
tion and Control, ICICIC 2007, p. 111 (2007)

4. Davidsson, P., Wernstedt, F.: Software Agents for Bioprocess Monitoring and Con-
trol. Journal of Chemical Technology and Biotechnology 77(7), 761–766 (2002)

5. Fayad, M.E., Schmidt, D.C., Johnson, R.E. (eds.): Building Application Frame-
works: Object-Oriented Foundation of Framework Design. Wiley, New York (1999)

6. Guo, Y., Cheng, J., Gong, D., Zhang, J.: A Novel Multi-agent Based Complex
Process Control System and Its Application. In: van Leeuwen, J. (ed.) WG 1988.
LNCS, vol. 344, pp. 319–330. Springer, Heidelberg (1989)

7. Heragu, S.S., Graves, R.J., Kim, B.I., Onge, A.S.: Intelligent Agent Based Frame-
work for Manufacturing Systems Control. IEEE Transactions on Systems, Man,
and Cybernetics - Part A 32(5), 560–573 (2002)

8. Leduc, R.J., Lawford, M., Dai, P.: Hierarchical Interface-Based Supervisory Con-
trol of a Flexible Manufacturing System. IEEE Transactions on Control Systems
Technology 14(4), 654–668 (2006)

9. McArthur, S.D.J., Davidson, E.M.: Multi-Agent Systems for Diagnostics and Con-
diation Monitoring Applications. In: Proceedings of the 13th International Confer-
ence on Intelligent System Application to Power Systems, pp. 201–206 (2005)

10. Monch, L., Stehli, M.: ManufAg: A Multi-agent-System Framework for Production
Control of Complex Manufacturing Systems. Information Systems and e-Business
Management 4(2), 159–185 (2006)

11. Najid, N.M., Kouiss, K., Derriche, O.: Agent based Approach for a Real-time
Shop Floor Control. In: Proceedings of the 2002 IEEE International Conference on
Systems, Man and Cybernetics, vol. 4, pp. 6–9 (2002)

12. Nocon, W., Choinski, D., Metzger, M.: Web-based Control and Monitoring of the
Experimental Pilot Plant Installations. In: Proceedings of the IFAC Workshop on
Programmable Devices and Systems, pp. 94–99 (2004)

13. Seilonen, I., Pirttioja, T., Pakonen, A., Appelqvist, P., Halme, A., Koskinen, K.:
Information Access and Control Operations in Multi-agent System Based Process
Automation. In: Mař́ık, V., William Brennan, R., Pěchouček, M. (eds.) HoloMAS
2005. LNCS (LNAI), vol. 3593, pp. 144–153. Springer, Heidelberg (2005)

14. Seilonen, I., Pirttioja, T., Pakonen, A., Appelqvist, P., Halme, A., Koskinen, K.:
Modelling Cooperative Control in Process Automation with Multi-agent Systems.
In: Proceedings of the 2nd IEEE International Conference on Industrial Informat-
ics, INDIN 2004, pp. 260–265 (2004)

15. The OPC Foundation. OPC Unified Architecture Specification: Parts 1-11. Version
1.xx (2006-2007), http://opcfoundation.org/

16. Thomas, S.J., et al.: Monitoring and Analysis of Multiple Agent Systems.
In: Proceedings of the NASA/JPL Workshop on Radical Agent Concepts,
http://www.psatellite.com/papers/wrac2001.pdf

17. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, Chichester (2002)

http://opcfoundation.org/
http://www.psatellite.com/papers/wrac2001.pdf

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 389–396, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Agent Reasoning with Semantic Web in Web Blogs

Dinh Que Tran and Tuan Nha Hoang

Faculty of Information Technology
Posts and Telecommunications Institute of Technology

Km10, Nguyen Trai, Hanoi, Vietnam
tdque@yahoo.com, tuannhahoang@yahoo.com

Abstract. The Web pages contain lots of useful information but their complex
layouts, unstructures and semantics are becoming obstacles for autonomous
software agents in querying as well as processing. Various studies for represent-
ing web information as well as reasoning to infer useful knowledge are active
topics in semantic web. This paper focuses on presenting an architecture of a
multi-agent system with reasoning ability in web blog domain. The system in-
cludes classes of agents: crawler agents extract relevant data from various web
blog resources and then convert it to the form of OWL, reasoning agents makes
use of these resources and reasoning mechanism to infer necessary information
so that user agents get and dispatch the result to mobile phone user.

Keywords: Semantic web, reasoning, information integration, ontology, multi-
agent system, web blogs, web mining.

1 Introduction

A large number of pages on the World Wide Web are “personal home pages” or “web
blogs” that are concerned with personal information such as biographies, jobs, inter-
ests, hobbies. Among them are Yahoo blog, blogger.com and social networks such as
Myspace.com, Facebook.com, and Blogs.ebay.com. The information resources on
these blogs have been exploiting for recruiting talents, comparing prices in
e-commerce, hunting jobs and so on. However, their heterogeneous properties of for-
mats, structures and semantics have become obstacles for autonomous agents in inte-
grating these information contents.

Using various technologies of semantic web in enabling software agents to syndi-
cate and share information is active topics in web mining. The important advantage of
semantic web is the ability of combining reasoning into agents to infer new knowl-
edge from a given set of information ([1], [5], [7], [6], [8], [11], [15], [16], [18], [19]).
Studies on reasoning focus on applying reasoning techniques that have been widely
investigated in AI such as rule-based reasoning, plausible and non-monotonic reason-
ing or probabilistic reasoning.

This paper presents an architecture of multi-agent system that is able to extract het-
erogeneous information on the web blogs, to convert to OWL format and then to make
use of a reasoning mechanism to deduce new information in web blogs. The paper is

390 D.Q. Tran and T.N. Hoang

structured as follows. Section 2 presents a reasoning of semantic web. Section 3 is the
architecture of the multi-agent system and Section 4 presents conclusions.

2 Reasoning in Semantic Web

2.1 OWL Overview

Semantic Web is considered as web of data resources that can be processed directly or
indirectly by machines. OWL (Web Ontology Language) ([2], [3], [5], [13], [15],
[18]) is the standard in data representation of semantic web and is used in need of
processing the content of information rather than displaying information such as
HTML. OWL is an evolution of the precedent languages DAML+OIL, which is based
on Description Logic. An illustration of the evolution is given in Figure 1 [2]:

Fig. 1. Evolution of OWL

Being an extension of RDF (the Resource Description Framework) for a general
model in representing the resources on the web through triples of “subject”, “predi-
cate” and ”object”, OWL supports ([2], [3]):

• Creating information structure to be understandable and usable by agents
• Making the possibility to reuse knowledge for applications in different contexts
• Providing a tool for developing and adapting the current knowledge in chang-

ing environment
• Integrating the information resources into a larger knowledge base.

An example on Web Blogs Domain is represented in OWL (Table 1):

Table 1. OWL representation of Web Blog Domain

 <owl:Ontology rdf:about="Person Information"/>
 <owl:Class rdf:ID="Person"/>
 <owl:Class rdf:ID="Company">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Association"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="hasFriend">
 <rdfs:range rdf:resource="#Person"/>
 <rdfs:domain rdf:resource="#Person"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="interestedIn">
 <rdfs:range rdf:resource="#Interest"/>
 <rdfs:domain rdf:resource="#Person"/>
 </owl:ObjectProperty>

 Agent Reasoning with Semantic Web in Web Blogs 391

2.2 Reasoning Rules in OWL

Reasoning based on rules has been familiar in AI community and is widely used in
developing multi-agent systems. Reasoning both in a description logic knowledge and
rule-based knowledge has gained much interest in the Semantic Web community
([11], [12], [15], [16], [19], [20]). An illustration of representation of rule in OWL is
given in Table 2.

Table 2. Representation of rule

Example
Query: who has the interest in Information Technology?
Rule: If a person? P has hasInterests is ?M, and ?M is one instance
of Information Technology.
Instances of Information Technology include Computer Science,
Software Engineering, Agent Technology…
[likeInformatics: (?P interestedIn ?M),(?M hasType Informatics)->
(?P interestedIn Informatics)]

3 Information Query System on Web Blogs

3.1 Scenario

Consider the following scenario:
A client would like to use mobile phone to seek people who have the same hobbies or
some characteristics on her demand.

The above problem may be reduced to the following sub-problems: (1) Extracting
personal information from blog pages such as Yahoo blog, blogger.com. And then
converting it into a format OWL; (2) Reading the formatted data and performing
inference based on ontology and constructed rules; (3) Integrating the resulted infor-
mation and sending to users. Solvers for these problems are software agents whose
architecture and functions are described in the next section.

3.2 System Architecture

The multi-agent system is built and implemented by using Jade platform [4] and its
architecture is described in Fig. 2. The system collects information from web re-
sources and stores them in OWL format. The information will be combined with the
inference rules and ontology in order to produce new knowledge for querying later.

Crawler engine: Collecting the blog pages containing personal information, and to
download these HTML documents to local host. Since most blogs connect to each
other by linking “friend”, we can crawl a large number of blogs from a set of seed
URLs. Our crawler engine is composed of agents, which is extended from multi-
thread model [20], to allow autonomous agents to locate on various machines. The
CoordinatingAgent maintains a common list of unvisited URLs that is initialized
with seed URLs provided by a user or another program. Each CrawlingAgent loop
involves picking the next set of URLs to crawl from the common queue, fetching the
page corresponding to the URL through HTTP, parsing the retrieved page to extract
the URLs and specific information, and finally adding the unvisited URLs to the
CoordinatingAgent (Figure 3).

392 D.Q. Tran and T.N. Hoang

Fig. 2. Multi-agent system architecture

Fig. 3. Crawling Agent architecture

Extracting Engine: Information is extracted from blog pages by using grammati-
cal inference technique ([14], [17]), and then the collected data is normalized in XML
format in predefined template and converted to OWL format (Fig. 4).

Reasoning engine: Including PersonAgent, DefaultOntologyAgent, De-
faultRuleAgent, ReasoningAgent (RA) and other OntologyAgents, Rule-
Agents. It takes over the responsibility to integrate rules, ontology and the collected
information to generate new information.

• PersonAgent: dispatching personal data in OWL to ReasoningAgent as well as
supplying a query engine to query OWL data from its database. PersonAgent
performs actions:

 Agent Reasoning with Semantic Web in Web Blogs 393

Fig. 4. Extracted result in XML format

Begin: waiting request for OWL data from RA
Update: updating new set of data, this is received from RA or Extract-
ing/Coordinating Agent, to its database
Query: when receiving “query” message from RA, it starts executing query and
then send the result to RA

• DefaultOntologyAgent receive request from RA, if the needed ontology is not
available, it will contact with OntologyYellowpageAgent to find which Ontol-
ogyAgent supports ontology in required domain. When ontologies are received
from different resources, they must be integrated by OntologyAgent before being
sent to RA. DefaultOntologyAgent performs behaviors:

Begin: waiting state for receiving a request from RA and other Ontology Agent.
Find: when receiving “ontology” message from RA, it checks if its domain is corre-
sponding to the request message. If not, it will send “search” message to Yellow page
OntologyAgent to get address of all OntologyAgents supporting ontology in
this domain.
Exchange: sending an “exchange” message to other Ontology Agent to get necessary
data.
End: The ending is successful if there is at least one agent that supports ontology in the
request domain. Then the result will be sent back to RA.

• DefaultRuleAgent supplies inference rules for RA, if RA requests rules that are
not available in its database, it will send request to RuleYellowpageAgent for
seeking suitable rules. The received rules must be pre-processed, integrated and
then sent to RA. DefaultRuleAgent behaviors are similar to DefaultOntol-
ogyAgent.

<page_url>http://360.yahoo.com/profile-
ifE.jPE9dLKIwTfIknP4DuSSwg--?cp=1</page_url>
<name>NOBITA</name>
<school>Banking Academy</school>
<work>
 <company>
 <name> Petro Vietnam Finance Company</name>
 <position> Project Finance
Execute</position>

.
 <company>

.
</work>
<interests>
 <area name=”Self development”/>
 <area name=”English Study”/>
 <area name=”book”>
 <book>The One Minute Manager – Ken
Blanchard & Spencer Johnson</book>
 </area>
 <area name=”movie”>
 <movie>The last Samurai</movie>
 </area>
</interests>
<friends>
 <friend><url>http://360.yahoo.com/profil</url>
 <friend>
</friends>

394 D.Q. Tran and T.N. Hoang

• Mobileagent: using Jade-leap [4],
this agent will locate on users’ mobile
and connect with ReasoningAgent
through Jade platform (Figure 5). It
supports clients to query and display
the result. When starting query by
Search, the request is encoded into a
query statement, then sending to
ReasoningAgent. RA will process
this query and then execute reasoning
based on its knowledge and return the
expected result. The terminal device
will display the information from
ReasoningAgent.

Fig. 5. Query and result

• ReasoningAgent is the important component of our system. It is developed based
on Jena ([6], [7]) that supports effective storage for a number of databases (e.g.,
MySQL, Oracle) and querying. ReasoningAgent supports behaviors (Figure 6):

Begin: RA is in waiting state to receive request from MobileAgent
Reasoning initiation: It checks if the domain of request message is available in its de-
fault data: Ontology and Rule. If its ontology and rules are not related to requesting do-
main, RA will send a request messages to DefaultOntologyAgent and Defaul-
tRuleAgent to get the needed ones.

Fig. 6. Activity of Reasoning Agent

 Agent Reasoning with Semantic Web in Web Blogs 395

Reasoning: Receiving suitable ontology and rules, it performs the process of reasoning. It
will send “person” message to PersonAgent to get successively sets of person informa-
tion in OWL format. RA makes inference on the received information and then sends an
updated message to PersonAgent. Lastly, sending the query result to MobileAgent,
and then coming to waiting state.

4 Conclusions and Further Research

Our paper presented architecture of a multi-agent system which comprises a sub-
architecture for crawling and extraction and sub-architecture of reasoning. The per-
sonal information is firstly extracted from web blogs and the converted into OWL
format and stored in database. ReasoningAgent combines the ontology and rules
with personal information in the OWL format to infer new knowledge in which ontol-
ogy and rules are supplied from various agents. Our research is among efforts to
bridge between the current web and semantic web.
 With this architecture, crawling process with agents can take advantage of internet
bandwidth; ontology and rules can be managed more flexible and easier for construct-
ing. However, ontology and inference rules presented in this system is not enough
large to meet the diversity of person information. We are currently studying: (i) Ap-
plication of data mining techniques to automatically construct rules and ontology
from OWL database; (ii) Making use of reasoning techniques such as probabilistic
reasoning, non-monotonic reasoning to this web logs domain. These research results
will be presented in our further work.

References

1. Antoniou, G., et al.: Reasoning methods for personalization on the semantic web. Annals
of Mathematics, Computing & Teleinformatics (2004)

2. Horrocks, I.: Hybrid Logics and Ontology Languages. Talk at HyLo (2006)
3. Horrocks, I.: DAML+OIL: a Description Logic for the Semantic Web (2002)
4. Jade - Java Agent DEvelopment Framework, http://jade.tilab.com/
5. Hendler, J.: Agent and Semantic web. IEEE Intelligent Systems 16(2) (2001)
6. Jena project homepage, http://jena.sourceforge.net/
7. Jeremy, J., et al.: Jena: Implementing the Semantic Web Recommendations. Technical Re-

port HPL (2004)
8. Kuno, K., Wilkinson, C., Reynolds, D.: Efficient RDF storage and retrieval in Jena2. In:

Proceedings of VLDB Workshop on Semantic Web and Databases (2003)
9. Mostafa, M., et al.: The Ontology Web Language (OWL) for a Multi-Agent Understating

System (2005),
 http://ieeexplore.ieee.org/iel5/9771/30814/01427149.pdf

10. Resource Description Framework (RDF) / W3C Semantic Web Activity, http://
www.w3.org/RDF/

11. Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Nonmonotonic Ontological and Rule-
Based Reasoning with Extended Conceptual Logic Programs. In: Gómez-Pérez, A.,
Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 392–407. Springer, Heidelberg
(2005)

12. Cayzer, S.: Semantic Blogging: Spreading the Semantic Web Meme (2004)

396 D.Q. Tran and T.N. Hoang

13. The Protégé Ontology Editor and Knowledge Base Acquisition System, http://
protege.stanford.edu/plugins/owl/

14. Hong, T.W.: Grammatical Inference for Information Extraction and Visualisation on the
Web. Ph.D. Thesis, Imperial College London (2002)

15. Wang, X.: Ontology Based Context Modeling and Reasoning using OWL. In: Proc. Of the
Second IEEE Annual Conference on Pervasive Computing and Co unications Workshops
(PERCOMW 2004) (2004)

16. Terziyan, V.: Semantic Web - new Possibilities for Intelligent Web Applications. Course
Introduction, Department of Mathematical Information Technology, University of Jy-
vaskyla. ITIN, France (2006)

17. Crescenzi, V., Mecca, G., Merialdo, P.: Roadrunner: Towards automatic data extraction
from large web sites. Technical Report, Universit di Roma Tre (2001)

18. Haarslev, V., Moller, R.: Racer - An owl reasoning agent for the semantic web. In: Proc. of
IEEE/WIC International Conference on Web Intelligence, Halifax Canada (2003)

19. Ding, Z., Peng, Y.: A Probabilistic Extension to Ontology Language OWL. In: 37 th Ha-
waii International Conference on System Sciences, Hawaii (2004)

20. Pant, G., Srinivasan, P., Menczer, F.: Crawling the Web. In: Levene, M., Poulovassilis, A.
(eds.) Web Dynamics: Adapting to Change in Content, Size, Topology and Use. Springer,
Heidelberg (2004)

T.D. Bui, T.V. Ho, and Q.T. Ha (Eds.): PRIMA 2008, LNAI 5357, pp. 397–404, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Design of a Multiagent System over Mobile Devices for
the Planning of Touristic Travels

Miguel Valdés and Claudio Cubillos

Pontificia Universidad Católica de Valparaíso, Escuela de Ingeniería Informática,
Av. Brasil 2241, Valparaíso, Chile

miguel.valdes.s@mail.ucv.cl, claudio.cubillos@ucv.cl

Abstract. This work presents the results of designing a multiagent system for
the tourism sector, whose objective is to give support to the tourist before and
during his travel by means of mobile devices. The system focuses on the crea-
tion of itineraries, but besides allows the booking, publication and notification
of changes in the services. The system was designed with the PASSI methodol-
ogy and a prototype is being implemented over Jade.

Keywords: PASSI, Agents, Itinerary, Tourism, Mobile Devices.

1 Introduction

In order for the tourism industry would reach the success and development that allows
it today to be one of the biggest world industries, much is due to the information
 technologies that from its beginnings has generated a wide range of information-
technology systems that provide support for both, the tourist and the service provid-
ers. In that direction, the present project consists in designing a multi-agent system
that allows the tourist to plan his travels by means of some mobile device. The system
will have to support the tourist in the obtaining of an itinerary, provide a means to
publish new services, allow the booking of these services and the notification of even-
tual changes on them.

This system is thought to be a large-scale system, that is, a multi-agent system that
holds a large number of agents. First, we begun designing the system as from similar
projects, next have identified some bottlenecks that were generated when agents'
number is increased and when information processing consumes too many resources.

2 Related Work

In the last years have been developed diverse projects related with tourism, agents and
mobile devices. Firstly, in [1] is presented the specification of a personal travel assis-
tant that followed FIPA standards. Among the most relevant projects found in litera-
ture can be mentioned @lisTur-Móvil [4], Crumpet [5], GUIDE [6], and Palio [7].
However, in general terms these projects do not provide much information on its re-
sults. The only exception is the e-Travel [8] project of which even the source code is
available. Other related works with tourism are numerous Web projects, but the use of

398 M. Valdés and C. Cubillos

this technology forces the tourist to be connected every time that wants to manage the
created itinerary. A last source has been the ontologies found in the Ontoselect [9]
website, the ones that were used in part to define a more extensive ontology.

This work is, in a certain way, the continuation of the specification accomplished
by FIPA's group, but increasing their functionalities and focused in the efficiency of
the system in presence of a large number of agents, and the resources consumption for
part of the mobile device of the tourist.

3 The PASSI Methodology

This project will make use of PASSI (Process for Agent Societies Specification and
Implementation) as development methodology, which uses UML as modeling lan-
guage. This methodology accomplishes the specification of a multi-agent system with
a bottom-up approach, and gives support for the verification and validation of its
models and specifications. PASSI has a toolkit [3] for IBM Rational Rose to support
this methodology, besides allows the user to follow and adequately implement the
PASSI phases thanks to the automatic compilation of diagrams. For a detailed de-
scription of PASSI five models and its respective steps, please refer to [2].

4 The Tourist Industry

Tourism is defined officially as the set of activities accomplished by people that travel
to (and they remain in) a place for diverse motivations, such as pleasure, business or
other purposes. Tourism is based on mobility, hence the supply and demand of ser-
vices conforms a worldwide network, where production and distribution is based on
cooperation. Furthermore, it is an industry based in confidence among parties (clients
and providers) and the information available, as at the moment of deciding and ac-
quiring tourist services, only the information about the product is available and not
the product itself [10].

The following elements compose the tourism industry:

• The tourist is a person who travels and lodges out of his domicile, and whose stay
requires of varied tourist services.

• The tourist service is an activity, accomplished in a determined place that allows
satisfying the tourist needs during his stays. These can be divided into four sectors:
Attractions, Accommodation, Alimentation and Transportation.

• The provider is the person or company that provides a tourist service.
• The intermediary is the role performed by the tour operators, among others, to bring

the tourist closer to the services available.

4.1 The Planning of Travels

It is difficult to know how much money is going to be spending in a travel. For it, it is
necessary to establish an initial budget and the number of persons to be traveling.
Later, we have to establish the travel dates. Next, we have to make a decision about
the cities or regions that are wished to be visited, taking into account the number of

 Design of a Multiagent System over Mobile Devices 399

days to stay at them. Later, the activities need to be selected to be held in each place.
Knowing the days to be spent on each place, the accommodation needs to be defined
and depending if this includes alimentation or not, we have to search for somewhere
to eat. Subsequently, we have to select the mediums of transportation that will allow
us to move between the cities and to get to the places of concern. Finally, we have to
be provided with all the bookings that are necessary.

As it can be foretell, to design an itinerary is not a simple task. The travel packages
offered by tour operators exist in order to support the tourist in speeding-up the build-
ing of an itinerary. In these packages, it is possible to integrate several tourist services
under a single product; however the problem is that the majority of these packages
present a limited flexibility.

PersonalAgent
<<Agent>>

PlannerAgent
<<Agent>>

BrokerAgent
<<Agent>>

Serv iceAgent
<<Agent>>

Factory Agent
<<Agent>>

Jade DF

Sav e Itinerary

Get Brief Inf ormation

Get Constrains

Respond To Call For
Serv ice

Search Serv ices

Tourist

Manage Prof ile

Itinerary Compilation

<<communicate>>

Validate Selected Serv ices

Parse Constrains

Create Serv ice List

<<communicate>>

Propose Serv ices

<<include>>

<<include>>

<<communicate>>

<<include>>

Get Full Inf ormation

Select Serv ices

Read Pref erences

Prov ider

Booking Serv ices

Manage Serv ice Inf ormation

Prov ider's Booking Sy stem

Manage Bookings

<<communicate>>

<<include>>

Manage Contracts

<<include>>

Create New Itinerary

Create Itinerary

<<communicate>>

<<include>>

<<include>>

<<include>>

<<communicate>>

<<communicate>>

<<communicate>>

<<communicate>>

<<communicate>>

<<communicate>>

<<include>>

Create New Agent

<<communicate>>

<<communicate>>

Fig. 1. Agent Identification Diagram

400 M. Valdés and C. Cubillos

5 The Proposed Solution

Given the mobile nature of the tourist area, the proposed solution involves to design a
system that adapts to diverse mobile devices, between these we can find PDAs, Mo-
bile Phones, Smartphones, and traditional devices as a Laptops. In order to achieve
this, will be designed a multi-agent system that permits the obtaining of itineraries
from the tourist's preferences. Besides, to allow the personalization of the itinerary,
the system will have to allow the booking of the selected services, notification of
changes on them and remind the selected activities.

5.1 Multiagent System Design

The specification of this project was done using the PASSI methodology. Due to
space reasons, will be showed only some figures.

From the System Requirements Model has been done the Domain Requirements
Description diagram, and as of this diagram was grouped the system's functionalities
to identifying the agents, resulting of this the Agent Identification diagram, of which
is shown a simplified version in the Figure 2. The diagram shows the agents that will
be a part of the system which are described in the following:

newItineraryRQ

Ontology : newItineraryRQmsg
Language : FIPA-SL0
Protocol : FIPARequest

<<Communication>>

getPreferencesRQ

Ontology : getPreferencesRQmsg
Language : FIPA-SL0
Protocol : FIPARequest

<<Communication>>

getProfileRQ

Ontology : getProfileRQmsg
Language : FIPA-SL0
Protocol : FIPARequest

<<Communication>>

selectServicesRQ

Ontology : selectServicesRQmsg
Language : FIPA-SL0
Protocol : FIPARequest

<<Communication>>

bookingRQ

Ontology : bookingRQmsg
Language : FIPA-SL0
Protocol : FIPAContractNet

<<Communication>>

getFullInformationRQ

Ontology : serviceFullInformationRQmsg
Language : FIPA-SL0
Protocol : FIPARequest

<<Communication>>

newItineraryRS

Ontology : newItineraryRSmsg
Language : FIPA-SL0
Protocol : FIPARequest

<<Communication>>

ServiceAgent

serviceAgent : AID
receiver : AID

<<Agent>>

PlannerAgent

plannerAgent : AID
receiver : AID

<<Agent>>

book ingRQ

getFullInformationRQ

PersonalAgent

personalAgent : AID
receiver : AID

<<Agent>>

newItineraryRQ

newItineraryRS
getPreferencesRQ

getProfileRQ
selectServicesRQ

Fig. 2. Communication Ontology Description

 Design of a Multiagent System over Mobile Devices 401

Personal Agent: Is responsible to remember the tourist's profile, obey his instructions,
manage the itinerary, search and notify changes in services. It is contingent upon the
device in which it finds, such as a PDA or a Laptop. When this agent is created, could
require the creation of a Planner Agent to accomplish some operations.

Planner Agent: Acts in the tourist's behalf. This agent should check the tourist's re-
quirements, looking for the services through the Broker Agent, filtering them and
booking the services selected by the tourist. This agent is independent from the tourist
and when the agent finishes its execution, it does not save any information about the
queries and is removed from the platform.

Broker Agent: Receives requirements from the Planner Agent to then proposing a list
of services that can satisfy them. This agent will communicate with Jade's DF to get a
list of registered services.

Service Agent: Is responsible of publishing and informing about the services that the
provider offers. This agent manages information about the service that offers, its reg-
istration with the DF, and its booking if available, through a private Booking System.
In the case of not having such a system, it will send the tourist the enough information
to accomplish the booking by other means, such as phone or fax.

Jade DF

Provider

Provider's
Booking System

BrokerAgent
brokerAgent : AID
receiver : AID

proposeServices()
parseMessage()
searchServices()
checkAnswer()
createServicesList()
createProposal()
saveBrokerAID()

<<Agent>>

ServiceAgent

serviceAgent : AID
receiver : AID

propose()
getBriefInformation()
getContractsForNoticeChanges()
checkTouristAnswer()
cancelBooking()
booking()
getFullInformation()
isServiceUpdated()
parsePreferences()
saveContract()
checkConstrains()
createAnswer()
showLogInForm()
checkUser()
isThisUserTheProvider()
createListOfProvidersServices()
selectOneService()
modifyServiceInformation()
confirmChanges()
updateServiceInformation()
notifyChangesInService()
getContractForNoticeChanges()
getContractsNotAccomplished()
cancelContract()
getInformationDate()
checkDates()
updateContract()

<<Agent>>

Tourist

PlannerAgent
plannerAgent : AID
receiver : AID

formatMessage()
selectServices()
createItinerary()
savePreferences()
saveProfile()
searchForChanges()
itineraryCompilation()
getConstrains()
validateServices()
checkSpaceTimeConflicts()
bookingServices()
checkBookingResult()
readServices()
cancelBookings()
saveBrokerAID()

<<Agent>>

PersonalAgent

personalAgent : AID
receiver : AID

selectServices()
newItinerary()
getPreferences()
fillPreferences()
getProfile()
saveItinerary()
hasTheTouristAContract()
updateContractInformation()
updateService()
displayItinerary()
showItineraryOptions()
displayServiceInformation()
showServiceOptions()
confirmCancelation()
checkConfirmation()
removeBookingFromList()
updateItinerary()
notifyCauses()
savePlannerAID()

<<Agent>>

Factory Agent

factoryAgent : AID
receiver : AID

requestNewAgent()
createNewAgent()

<<Agent>>

Fig. 3. Multiagent Structure Definition Diagram

402 M. Valdés and C. Cubillos

Factory Agent: When a Personal Agent requires a Planner Agent, or a Planner Agent
requires a Broker Agent, they request the Factory agent for the assignation of such
agent. The Factory Agent will generate the agent when it is required and will send a
message back with the created agent's AID.

From Agent Society Model has been done the Domain Ontology Description and
Communication Ontology diagrams, of which can be appreciate a portion in Figure 2.
In relation to Protocol Description, have to explain that with the protocols defined by
FIPA satisfies the system's needs. Between these protocols, have to highlight the utili-
zation of Contract Net for side of the Planner Agent, for the contract/booking of ser-
vices. And the use of FIPA SL0 as the language for communications.

The Multiagent Structure Definition diagram is presented in Figure 3, where can be
appreciated the diverse actors and their relations with all the system's agents, relations
that indicate the flow of existing information in the communications between agents.
This diagram puts special emphasis in showing the agents' knowledge as attributes
and showing their tasks as procedures.

6 Prototype Implementation

To test the accomplished agent architecture we have been working in a prototype us-
ing JADE/LEAP. In Figure 4 can be appreciated the Main Container's GUI that in
addition to the presence of the three platform agents (ams, df, and rma) holds the fa
agent that corresponds to the Factory Agent (loaded along with the platform). Can be
appreciated also a container named BE which corresponds to the BackEnd that is nec-
essary to be able to load the agents programmed with CLDC. This container holds the
pa agent that corresponds to the agent loaded by the emulated mobile phone. This
agent requested a Planner Agent named pa_0, loaded in the Main Container.

Fig. 4. Working prototype to test the design

 Design of a Multiagent System over Mobile Devices 403

Container

Multiagent System Platform

Local-Server 1

Service Agent 1

Container

PDA

Main-Container

Main-Server

AMS DF
FrontEnd BackEnd

Container

Mediator

Cellphone

Personal Agent 1

Planner Agent 2

Broker Agent 1

Personal Agent 2
Planner Agent 1 Service Agent 2

Service Agent 3

Factory Agent

Fig. 5. Multiagent System Platform

At the right-hand can be seen the Personal Agent accomplishing the task of filling the
form with the travel preferences. In this first screen should be selected the city of origin
and destination, the beginning and ending travel-dates, and the number of travelers.

6.1 Agent’s Deployment in the Platform

When an agent is launched in the platform, must do it on a Container, which provides
an environment of execution to the agent. The system will consist of (see Figure 5) a
set of containers so that the workload and connectivity to mobile devices would be
low, and allows the distribution of services through various local containers.

7 Conclusions and Future Work

The present work has depicted an agent architecture devoted to the tourist domain. In
particular the system allows tourists to arrange itineraries through the use of mobile
devices.

As future work will be continued the work on the prototype to test the validity of
the accomplished design. Will be important to study the quantity of information that
will be able to keep in the device the Personal Agent. The system's performance when
exist a large number of agents making an offer and requesting services. The overload
that the system will have while creating agents when are required and evaluating the
possibility of hold an minimum number of agents waiting.

Acknowledgements. The present work has been partially funded by Grant PUCV
037.215/2008 under the “Collaborative Systems” Nucleus Project.

404 M. Valdés and C. Cubillos

References

1. FIPA Architecture Board.: FIPA Personal Travel Assistance Specification FIPA (2001)
2. Cossentino, M., Potts, C.: PASSI: a Process for Specifying and Implementing Multi-Agent

Systems Using UML (2001)
3. PASSI Toolkit (PTK), http://sourceforge.net/projects/ptk
4. Raventós, G., et al.: Turismo y Patrimonio Cultural Latinoamericano: Una Aplicación de

Comercio Electrónico Agentes Inteligentes. In: XI Convención Informática 2005, La Ha-
bana, Cuba (2005)

5. Poslad, S., et al.: Crumpet: Creation of user-friendly mobile services personalised for tour-
ism. In: Proceedings of 3G 2001 (2001)

6. Davies, N., et al.: Developing a Context Sensitive Tourist Guide, Technical Report Com-
puting Department, Lancaster University (March 1998)

7. Zarikas, V., et al.: An architecture for a self-adapting information system for tourists. Proc.
2001 (2001)

8. Kalczyński, P., et al.: Personalized Traveler Information System (2001)
9. Ontoselect, http://olp.dfki.de/ontoselect/

10. Staab, S., et al.: Intelligent Systems for Tourism. IEEE Educational Activities Department
(2002)

Author Index

Abbas, Safia 251
Alhashmi, Saadat M. 14, 259
Amouroux, Edouard 26
Arai, Sachiyo 34
Arbab, Farhad 42
Aştefănoaei, Lăcrămioara 42, 54
Auger, Pierre 295

Beydoun, Ghassan 98
Boella, Guido 66, 78, 86
Bogg, Paul 98
Botti, Vicente 197
Boucher, Alain 127
Bourgne, Gauvain 109
Broersen, Jan 86
Bui, The Duy 222

Cabrera-Paniagua, Daniel 121
Chu, Thanh-Quang 127
Cubillos, Claudio 121, 397

Dastani, Mehdi 42, 54, 139
de Boer, Frank S. 42, 54
Desvaux, Stéphanie 26
Dinh, Huy Q. 153
Do, Nguyen Luong 222
Do Duc, Dong 153
Drogoul, Alexis 1, 26, 127, 295
Duc, Nguyen Tuan 307

Ehlers, Elizabeth Marie 340

Fujita, Katsuhide 161
Fukuta, Naoki 173
Furuhata, Masabumi 185

Garcia, Emilia 197
Giret, Adriana 197
Governatori, Guido 315, 328
Gutiérrez-Garćıa, J. Octavio 206

Hassan, Mohd Fadzil 214
Hattori, Hiromitsu 370
Hirata, Hironori 34
Ho, Dac Phuong 222

Ho, Tuong Vinh 287
Hoang, Tuan Nha 389
Hoang Xuan, Huan 153

Ishida, Toru 370
Ishigaki, Yoshihisa 34
Ito, Takayuki 161, 173, 231
Iwakami, Masashi 231

Jamroga, Wojciech 239

Khayyambashi, Mohammad-Reza 6
Kim, Minkoo 267
Klein, Mark 161
Koning, Jean-Luc 206
Kuribara, Shusuke 251

Lam, YiHua 259
Lee, Keonsoo 267
Lopez-Carmona, Miguel A. 275
Low, Graham 98

Mahmood, Ahmad Kamil 357
Marilleau, Nicolas 287
Marsa-Maestre, Ivan 275
Maudet, Nicolas 109
McCartney, Robert 323
Meyer, John-Jules 42, 54
Mol, Christian P. 139

Nakajima, Kengo 370
Nguyen, Hong-Phuong 127
Nguyen, Ngoc Doanh 295
Nguyen, Ngoc Thanh 2
Nguyen, Trong Khanh 287
Nooraee Abadeh, Maryam 6
Novani, Santi 348

Odagaki, Marika 370

Padgham, Lin 4
Padmanabhan, Vineet 315
Park, Gi-Duck 323
Perrussel, Laurent 185
Pham, Duy Hoang 328
Pike, Janine Claire 340
Putro, Utomo Sarjono 348

406 Author Index

Rahman, Arief 357
Ramos-Corchado, Félix F. 206
Robertson, Dave 214

Sawada, Shoichi 370
Sawamura, Hajime 251
Schneider, Etienne 357
Seghrouchni, Amal El Fallah 109
Siallagan, Manahan 348
Soldano, Henry 109
Steunebrink, Bas R. 139

Takeuchi, Ikuo 307
Tan, Vu Van 381
Thakur, Subhasis 315, 328
Tinnermeier, Nick 42
Tran, Dinh Que 389

Utomo, Dhanan Sarwo 348

Valdés, Miguel 397
van der Torre, Leendert 66, 78, 86
Velasco, Juan R. 275
Villata, Serena 66, 78
Vo, Duc-An 127

Yang, Jung-Jin 323
Yi, Myeong-Jae 381
Yoo, Dae-Seung 381

Zaminifar, Kamran 6
Zhang, Dongmo 185
Zucker, Jean-Daniel 127

	Title Page
	Preface
	Organization
	Table of Contents
	Keynote Speech: A Review of the Ontological Status, Computational Foundations and Methodological Processes of Agent-Based Modeling and Simulation Approaches: Open Challenges and Research Perspectives
	Keynote Speech: Computational Collective Intelligence and Knowledge Inconsistency in Multi-agent Environments
	References

	Keynote Speech: Agent Oriented Software Engineering: Why and How
	Coordinating Agents Plans in Multi-Agent Systems Using Colored Petri Nets
	Introduction
	Related Work
	Coordinating Agents Plans
	Modeling Coordination Mechanisms Using CPNs
	Simulation
	Generalization

	A Language for Definition Interdependencies of MAS Plan
	Conclusion
	References

	Design of an Internet-Based Advisory System: A Multi-agent Approach
	Introduction
	The Integrated System
	Assigning Agents
	System Level Design
	System Plan Model
	Agent Level Design

	Development
	Agent Plan Model
	Communicative Act amongst Agents
	Patient Agent and Expert Agent Communication

	Intelligence in Agents
	Conclusion and Discussion
	References

	Towards Virtual Epidemiology: An Agent-Based Approach to the Modeling of H5N1 Propagation and Persistence in North-Vietnam
	Introduction
	The Context of Avian Influenza in Vietnam
	Two Epidemiological Questions to Address
	Addressing Epidemiological Questions through Simulated Experiments

	Epidemiological Models: A Brief Review
	Conceptual Model of Avian Influenza Propagation
	Frame of the Epidemiologic Study
	Relevant Actors
	Implementation

	Conclusion
	References

	Measurement of Underlying Cooperation in Multiagent Reinforcement Learning
	Introduction
	What’s a Cooperative Behavior?
	Problem Domain
	Definition of Measure
	Mutual Information Measure of Two Agents

	Experiments
	Experimental Setting
	Learning Algorithm
	Experimental Result

	Discussion
	Conclusion
	References

	Reo Connectors as Coordination Artifacts in 2APL Systems
	Introduction
	2APL
	The Reo Coordination Language
	Reo in Practice

	Integrating Reo Connectors into the 2APL Platform
	An Auction Scenario
	Animating and Model-Checking Auctions

	Conclusions and Future Work
	References

	A Verification Framework for Normative Multi-Agent Systems
	Introduction
	Programming Normative Multi-Agent Systems
	Syntax
	Operational Semantics

	Prototyping Normative Multi-Agent Systems in Maude
	Executable Normative Multi-Agent Systems
	Model-Checking Normative Multi-Agent Systems

	Conclusions and Future Work
	References

	Social Viewpoints for Arguing about Coalitions
	Introduction
	Social Viewpoints
	Arguing about Coalitions
	Related Work
	Summary and Further Research
	References

	Changing Institutional Goals and Beliefs of Autonomous Agents
	Introduction
	Running Example: The Government Scenario
	Social Viewpoints for Dynamic Dependence Networks
	The Institutional View
	Institutional Dynamic Dependence Networks
	Related Work
	Conclusions
	References

	Reasoning about Constitutive Norms, Counts-As Conditionals, Institutions, Deadlines and Violations
	Introduction and Running Example
	Institutional Equivalence of Constitutive Normative Systems
	Obligation Equivalence of Regulative Norms with Deadlines
	Violation Equivalence of Regulative Norms with Deadlines
	Summary
	References

	When to Use a Multi-Agent System?
	Introduction
	Related Work
	MAS Features for Determining Suitability
	Problem-Related Features
	Solution-Related Features
	Relating MAS Designed Properties to Identified Features

	Framework for Determining MAS Suitability
	Conclusion and Future Work
	References

	Multiagent Incremental Learning in Networks
	Introduction
	Formal Model
	Knowledge Representation
	Consistency
	Revision Mechanisms
	Communicational Constraints
	Problem Description

	Mechanisms with Propagation
	Learning Process
	Local Hypotheses Exchange
	Propagating Hypotheses in a Network
	Communication Complexity

	Experiments
	Parameters
	Evaluation
	Results

	Extensions
	Conclusion
	References

	UML-F in the Design of an Agent-Oriented Software Framework
	Introduction
	Related Work
	Software Frameworks and UML-F
	Multi-agent Framework Design
	Conclusion
	References

	Interactive Learning of Expert Criteria for Rescue Simulations
	Introduction
	Open Rescue Model Based on the GAMA Platform
	The GAMA Platform
	Open Rescue Model

	Interactive Learning for Rescue Simulation
	Example of Rescue Decision with Ambulance’s Behaviors
	Decision Criteria for Ambulance
	Expert’s Intervention in the Simulation Via Interactive Interface
	Interactive Learning of Expert Criteria for Ambulance Decision
	Example of the Algorithm’s Execution

	Experimental Protocol and Preliminary Results
	Conclusions
	References

	Modularity in Agent Programming Languages An Illustration in Extended 2APL
	Introduction
	Extending 2APL with Modules
	Syntax
	A 2APL Example
	2APL Module Specification
	Example Revisited

	Semantics
	Roles, Profiles, and Task Encapsulation
	Agent Roles
	Agent Profiles
	Task Encapsulation

	Conclusions and Future Work
	References

	On the Pheromone Update Rules of Ant Colony Optimization Approaches for the Job Shop Scheduling Problem
	Introduction and Related Work
	ACO Framework for JSS Problem
	Description of JSS
	Solution Construction
	Pheromone Trail and Heuristic Information

	Convergence Property and Improvements of ACO
	Convergence Property for Pheromone Trails
	The Improvements for JSS Problem

	Experimental Results
	Conclusion
	References

	Preliminary Result on Secure Protocols for Multiple Issue Negotiation Problems
	Introduction
	Negotiations with Nonlinear Utility Functions
	Secure and Scalable Negotiation Protocols
	Distributed Mediator Protocol for Negotiation
	Take It or Leave It (TOL) Protocol for Negotiation

	Hybrid Secure Protocol(HSP) for Negotiation
	Experiment Results
	Setting of Experiment
	Experimental Results

	Related Work
	Conclusion
	References

	Performance Analysis about Parallel Greedy Approximation on Combinatorial Auctions
	Introduction
	Preliminaries
	Winner Determination Problem
	Lehmann’s Greedy Winner Determination

	Enhanced Approximation Algorithms
	Incremental Updating
	Parallel Search for Multiple Weighting Strategies

	Evaluation
	Experiment Settings
	Evaluation on Basic Auction Dataset
	Evaluation on Large Auction Dataset

	Related Work
	Approaches for Optimization Problems
	Approaches to Obtain Optimal Solutions
	Greedy Approaches
	Other Approaches

	Conclusions
	References

	Online Market Coordination
	Introduction
	Alliance Coordinating Contracts
	Contract in Alliance

	Online Market Model
	Fixed-Fee Contract
	No Advertisement
	Advertisement Effect

	Revenue-Sharing Contract
	No Advertisement Effect
	Advertisement Effect

	Profit Sharing Contract
	Conclusion and RelatedWork
	References

	Towards an Evaluation Framework for MAS Software Engineering
	Introduction
	Definition of the Evaluation Criteria
	Methodology and Modeling Language
	Development Tools
	Economical Aspects

	Conclusions
	References

	From Obligations to Organizational Structures in Multi-Agent Systems
	Introduction
	Definition and Management of Obligations
	The Event Calculus Formalism
	Operations over Obligations

	Role Definition
	Organizations
	Market Organization Example
	Composition of Organizations
	Discussion
	Conclusions and Future Work
	References

	Addressing the Brittleness of Agent Interaction
	Introduction
	Distributed Partial Constraint Satisfaction Problem
	Application of Distributed Partial CSP for Addressing Brittleness Problem
	Specification of Distance Metric
	Finding a Solvable MAP
	Global Distance Computation

	Conclusion
	References

	Dividing Agents on the Grid for Large Scale Simulation
	Introduction
	Background
	Multi-agent Based Simulation
	Distributed Multi-agent Based Simulation

	A Desktop Gird Platform for Multi-agent Based Simulation
	The Simulation Process
	Dividing the Agents into Groups

	Experiments and Results
	Conclusion
	References

	An Interest Rate Adjusting Method with Bayesian Estimation in Social Lending
	Introduction
	The Interest Rate Decision Model
	Bayesian Estimation Considering Influence of Group

	Interest Rate Correction of the Borrower with Bayesian Estimation
	Experiments
	Agent Simulation
	Setting
	Experimental Results

	Conclusions
	References

	A Temporal Logic for Stochastic Multi-Agent Systems
	Introduction
	Markov Temporal Logic
	Basic Models: Markov Chains
	Logical Operators as Minimizers and Maximizers
	MTL_{0}: A Logic of Markov Chains

	Reasoning about Stochastic Multi-agent Processes
	MTL_{2}: Syntax
	MTL_{2}: Semantics

	FormalResults
	Levels of Truth
	Concurrent Game Structures as MMDP’s. Correspondence between MTL_{2} and ATL*
	State-Based Formulae and Bellman Equations

	Conclusions
	References

	Applying the Logic of Multiple-Valued Argumentation to Social Web: SNS and Wikipedia
	Introduction
	Knowledge Representation and Argumentation
	Application to SNS
	Examining the Registration Requests to Mymixi
	Examining the Deletion of Friends from Mymixi
	Approving Additional Proposal to Mymixi

	Application to Wikipedia
	Conclusion and Future Work
	References

	Simulation of Halal Food Supply Chain with Certification System: A Multi-Agent System Approach
	Introduction
	The Simulated Halal Food Supply with Certification System Model Space
	Results
	Conclusion and Discussion
	References

	A Novel Approach for Conflict Resolution in Context-Awareness Using Semantic Unification of Multi-Cognition
	Introduction
	Background
	Context-Awareness
	Context, Service and Conflict

	Proposed Method
	Semantic Unification
	Service Model with the Proposed Method

	Simulation and Results
	Conclusion
	References

	Improving Trade-Offs in Bilateral Negotiations under Complete and Incomplete Information Settings
	Introduction
	Similarity-Based Negotiation Trade-Offs
	Improving the Trade-Off Algorithm under Complete and Incomplete Information Settings
	Using Derivatives within the Trade-Off Algorithm
	Using Random Permutations of the Issue Ordering

	Experimental Analysis
	Experimental Settings
	Experimental Results

	Conclusions and Future Work
	References

	PAMS – A New Collaborative Framework for Agent-Based Simulation of Complex Systems
	Introduction
	PAMS – A New Collaborative Framework for Agent-Based Simulation of Complex Systems
	PAMS: A Modular Environment
	Logical Architecture
	Technological Architecture

	Case Study
	Conclusion
	References

	Methodological Steps and Issues When Deriving Individual Based-Models from Equation-Based Models: A Case Study in Population Dynamics
	Introduction
	Case Study
	Classical Competition Model: Principle Competitive Exclusion
	Presentation of Our Model of Competition in a Two-Patch Environment

	Methodology
	First Step: A “Hybrid” Spatialized Model
	Following Steps

	Instantiation on the Case Study
	Experimental Environment
	Hybrid Model: Spatialization of the EBM and Patches
	Distribution of the Movement/Migration Processes
	Distribution of the Birth/Death and Competition Processes

	Experimental Results and Comparisons
	Conclusion and Discussion
	References

	Abstraction of Agent Cooperation in Agent Oriented Programming Language
	Introduction
	Related Work
	Language Design and Abstraction of Agent Cooperation
	Constructs for Modeling Mental State and Reasoning Cycle
	Abstraction of Agent Cooperation

	Communication Model and Execution Environment
	Application of Collective Operations
	Evaluation
	Conclusion and Future Work
	References

	Knowledge Assessment: A Modal Logic Approach
	Introduction
	Knowledge Structures, Surmise Systems and MS-Models
	MS/Neighbourhood Semantics

	Assessing Knowledge
	Models Satisfying Certain Conditions

	Discussion
	References

	The Design of a Self-locating Automatic-Driving Robot
	Introduction
	Related Research
	SOFTWARE Configuration
	Agent-Based Approach
	The Flow of Component
	Conclusion
	References

	Settling on the Group’s Goals: An n-Person Argumentation Game Approach
	Introduction
	Background
	Defeasible Logic
	Argumentation Semantics

	n-Person Argumentation Game
	Agents’ Interactions
	Agent’s Knowledge Structure
	Argument Justification

	Related Works
	Conclusions
	References

	Revenue Maximising Adaptive Auctioneer Agent
	Introduction
	Related Work
	RMAA Model
	The Auction Manager
	Auction Initialisation Module

	Implementation
	Conclusion and Future Research
	References

	Managing Collaboration Using Agent Based Simulation
	Introduction
	Drama Theory in Citarum River Basin Problem
	Agent Based Modeling in Drama Theory
	Emotion Model and Affiliative Tendency
	Modeling to Eliminate Trust Dilemma

	Simulation Using SOARS and Result
	First Scenario
	Second Scenario
	Third Scenario
	Fourth Scenario

	Conclusion
	References

	Using Agent-Based Simulation of Human Behavior to Reduce Evacuation Time
	Introduction
	Related Works
	Evacuation Phases
	Human Behaviors in Evacuation Process
	Panic
	Wayfinding
	Ignoring Immediate Leaving

	Agent-Based Modeling
	Prometheus Methodology
	Model Development
	Simulation Setup
	Validations

	Simulation Results
	Pre-evacuation Study
	ACO Wayfinding

	Discussions
	Conclusions
	References

	Participatory Simulation Platform Using Network Games
	Introduction
	Background
	Related Works
	Scenario Description Language Q
	Network Game gumonji

	Networked Simulator gumonji/Q
	An Architecture of gumonji/Q
	Functions of gumonji/Q

	An Example of Participatory Modeling Using gumonji/Q
	Participatory Modeling Process
	An Overview of the Modeling Experiment
	The Process of Modeling Experiment

	Conclusion
	References

	A Multiagent-System Framework for Hierarchical Control and Monitoring of Complex Process Control Systems
	Introduction
	Framework Design Criteria
	Design of Multiagent-Based Process Control System
	System Architecture
	Control and Monitoring Operations
	Agent Model for the Control and Monitoring Operations

	Database Structure
	Comparison with Existing Frameworks
	Concluding Remarks and Future Work
	References

	Agent Reasoning with Semantic Web in Web Blogs
	Introduction
	Reasoning in Semantic Web
	OWL Overview
	Reasoning Rules in OWL

	Information Query System on Web Blogs
	Scenario
	System Architecture

	Conclusions and Further Research
	References

	Design of a Multiagent System over Mobile Devices for the Planning of Touristic Travels
	Introduction
	Related Work
	The PASSI Methodology
	The Tourist Industry
	The Planning of Travels

	The Proposed Solution
	Multiagent System Design

	Prototype Implementation
	Agent’s Deployment in the Platform

	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

